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Samenvatting

Industriële robots worden veelvuldig gebruikt vanwege de flexibele inzetbaar-
heid, de hoge manipulatiesnelheid en de relatief lage prijs. De toepassing van
deze robots wordt echter beperkt door de matige volgnauwkeurigheid tengevol-
ge van de lage bandbreedte van standaard industriële regelaars. Gelukkig is de
repeteernauwkeurigheid van industriële robots meestal veel beter dan de volg-
nauwkeurigheid. Deze eigenschap kan worden benut voor het verbeteren van de
volgnauwkeurigheid door het toepassen van iteratief lerend regelen (ILC). ILC
verkleint de volgfout langs een traject dat herhaaldelijk wordt afgelegd door
iteratief een vooruitgekoppeld stuursignaal aan te passen.

De volgnauwkeurigheid van industriële robots kan aanzienlijk worden verbe-
terd door met ILC de frequentiecomponenten van de volgfout boven de band-
breedte van de standaard regelaar te reduceren. Beneden de bandbreedte wordt
de niet-lineaire dynamica van het mechanisme gelineariseerd door de regelaar,
maar boven de bandbreedte hangt de gesloten-lus dynamica af van de con-
figuratie van het mechanisme. Deze standsafhankelijke dynamica kan worden
benaderd als lineair tijdsvariërende (LTV) dynamica voor kleine afwijkingen ten
opzichte van de repeterende grote beweging. In dit proefschrift worden daarom
twee ILC algoritmen voor systemen met LTV dynamica ontwikkeld.

Het norm-optimale ILC algoritme berekent iteratief het stuursignaal dat
een gewogen som van de norm van de volgfout en de groei van het stuursignaal
minimaliseert. De fout wordt voorspeld met behulp van een LTV dynamisch
model. De berekening van het optimale stuursignaal is geformuleerd als een
optimaal regelprobleem met een eindige tijd. Dit regelprobleem kan worden
opgelost met behulp van een bestaand, efficiënt algoritme.

Het robuuste ILC algoritme berekent iteratief het stuursignaal dat de re-
ductie van de volgfout optimaliseert voor een LTV dynamisch model met een
gegeven modelonzekerheid. Er wordt een voldoende voorwaarde afgeleid waar-
onder dit stuursignaal een bepaalde reductie van de volgfout realiseert voor de
slechtst mogelijke invloed van de modelonzekerheid. Deze voorwaarde houdt
rekening met de LTV dynamica en de eindige lengte van het traject. De bere-
kening van het optimale stuursignaal is geformuleerd als een dynamisch spel en
de controle van de voldoende voorwaarde voor convergentie als een anti-causaal
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optimaal regelprobleem. Dit anti-causale regelprobleem en het dynamische spel
kunnen worden opgelost met behulp van bestaande, efficiënte algoritmen.

Convergentie analyse laat zien, dat de voorgestelde ILC algoritmen de volg-
fout met een instelbare convergentiesnelheid naar nul laten convergeren mits het
dynamische model voldoende nauwkeurig is. Een verhoging van de convergen-
tiesnelheid verlaagt de toelaatbare modelfout. Een te grote modelfout resulteert
in divergentie van de volgfout. De toelaatbare modelfout kan worden vergroot
door het toepassen van een robuustheidsfilter dat de componenten van het stuur-
signaal verwijdert waarop de dynamische respons niet voldoende nauwkeurig is
gemodelleerd. De verwijderde componenten van het stuursignaal kunnen echter
niet worden gebruikt om de fout te verkleinen, waardoor de uiteindelijke fout
meestal ongelijk is aan nul.

De voorgestelde ILC algoritmen zijn geschikt voor systemen met LTV dyna-
mica, ze zijn rekenefficiënt en verminderen de volgfout monotoon met een instel-
bare convergentiesnelheid. Deze unieke combinatie van eigenschappen maakt de
ILC algoritmen toepasbaar in de praktijk om de volgnauwkeurigheid van indu-
striële robots en andere systemen met LTV dynamica te verbeteren.

De prestaties van de voorgestelde ILC algoritmen zijn getest door ze toe
te passen op de industriële Stäubli RX90 robot. Het referentie traject voor de
positie van de robot is iteratief aangepast om de volgfout aan het uiteinde van
deze robot te verminderen. Deze volgfout is gemeten met een optische sensor.
De experimentele resultaten laten zien dat de volgfout aanzienlijk kan worden
verkleind door het toepassen van de ILC algoritmen, vooral door gebruik te
maken van een LTV model van de standsafhankelijke hoogfrequente dynamica
van de robot. De reductie van de volgfout is voldoende om de robot te kunnen
gebruiken voor het laserlassen van complexe geometriën met hoge snelheid.



Summary

Industrial robots are widely used in industry because of their dexterity, the
high manipulation speed and the relatively low price. However, the applicabil-
ity of these robots is limited by the mediocre accuracy resulting from the low
bandwidth of standard industrial controllers. Fortunately, the repeatability of
industrial robots is often much better than their tracking accuracy, which can
be exploited to improve the accuracy by the application of Iterative Learning
Control (ILC). ILC is a control technique that reduces the tracking error along a
trajectory that is traced repeatedly by the iterative refinement of a feedforward
signal.

The tracking accuracy of industrial robots can be improved substantially
with ILC by reducing the frequency components of the tracking error beyond
the low bandwidth of the standard industrial controller. Below this bandwidth
the non-linear dynamics of the robot mechanism are linearised by the controller,
but at higher frequencies the closed-loop dynamics depend on the configuration
of the robot mechanism. These configuration dependent dynamics can be ap-
proximated as linear time-varying (LTV) for small deviations from the repetitive
large-scale motion. Therefore, two ILC algorithms for systems with LTV dy-
namics are developed in this thesis.

The norm-optimal ILC algorithm iteratively computes the feedforward that
minimises a weighted sum of the norm of the error and the growth of the feedfor-
ward. The error is predicted from an LTV dynamic model. The computation of
the optimal feedforward is formulated as a finite-time optimal control problem
and it is shown that this optimisation problem can be solved using an existing,
computationally efficient algorithm.

The robust ILC algorithm iteratively computes the feedforward that opti-
mises the reduction of the error for an LTV dynamic model with a given uncer-
tainty. A sufficient condition is derived under which the feedforward reduces the
error with a specified fraction for the worst case effect of the uncertainty. This
condition takes the finite length of the iteration and the LTV dynamics into
account. The computation of the optimal feedforward is formulated as a finite-
time dynamic game and the check of the convergence condition is formulated
as an anti-causal optimal control problem. It is shown that the dynamic game
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and the optimal control problem can be solved using existing, computationally
efficient algorithms.

Convergence analysis shows that the proposed ILC algorithms make the
error converge to zero with an adjustable convergence rate if the dynamic model
is sufficiently accurate. Increasing the convergence rate reduces the allowable
model error. A model error that is too large results in divergence of the tracking
error. The allowable model error can be increased by using a robustness filter
that removes the components of the feedforward to which the dynamic response
is not modelled sufficiently accurate. However, the removed components of the
feedforward cannot be used to compensate for the error, which typically results
in a non-zero error after convergence.

The proposed algorithms are suited for systems with LTV dynamics, they are
computationally efficient and they are able to reduce the error monotonically
with an adjustable convergence rate. This unique combination of properties
makes the algorithms suited for improving the tracking accuracy of industrial
robots and other systems with LTV dynamics in practice.

The performance of the ILC algorithms is tested experimentally by the ap-
plication to the industrial Stäubli RX90 robot. The setpoints for the position of
the robot are adjusted with ILC to reduce the tracking error at its end-effector,
which is measured with an optical sensor. The experimental results show that
the proposed ILC algorithms are able to reduce the measured tracking error
substantially, especially if an LTV model of the configuration dependent high-
frequency dynamics of the robot is used. The reduction of the tracking error is
sufficient for the application of the robot to laser welding of complex trajectories
at high speed.
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List of conventions

ai vector a at time step i
Ai matrix A at time step i
ak

i vector a at time step i in iteration k
a∞i limit value of vector ai after infinite iterations
a lifted vector
A lifted matrix
ak

i element i of lifted vector a in iteration k
ā transformation of vector a based on the

singular value decomposition of the system matrix
Ā transformation of matrix A based on the

singular value decomposition of the system matrix
â estimated value
ǎ optimal value
¯̄a variable related to the TVARX model structure
ã variable in the alternative formulation of a set of equations
˜̃a variable in the alternative formulation of a set of equations
A′ alternative definition of matrix A
a(b) vector a related to variable b
−→a variable related to the causal part of the robustness filter
←−a variable related to the anti-causal part of the robustness filter
Oxyz xyz-coordinate system
x′ direction in the local coordinate system Ox′y′z′

‖a‖λ λ-norm of vector a
‖a‖∞ maximum of vector a
‖a‖2 2-norm of vector a
‖A‖i2 norm of matrix A induced by the vector 2-norm
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List of symbols

Latin symbols

A state-transition matrix of the state-space model
B input matrix of the state-space model
C output matrix of the state-space model
D feedthrough matrix the state-space model
d iteration-invariant disturbance
e tracking error
f feedforward input manipulated by ILC
G system matrix
H system matrix of the generalised plant including the learning controller
I unit matrix of appropriate dimensions
J objective function
L learning matrix
L auxiliary matrix in the solution of the optimal control problem
li ith component on the diagonal of L̄

M uncertainty pre-weighting matrix
mi ith component on the diagonal of M̄

N uncertainty post-weighting matrix
Na number of poles of the TVARX model
Nb number of zeros of the TVARX model
Nc number of delays of the TVARX model
Ne dimension of the tracking error
Nf dimension of the feedforward input
Ni number of time-steps in the iteration
Nk number of measurement series for the estimation of the TVARX model
Nn number of parameter sets over which the TVARX model is interpolated
No max(Na, Nb +Nc)
O zero matrix of appropriate dimensions
P system matrix of the generalised plant
P auxiliary matrix in the solution of the optimal control problem
p input of the normalised model uncertainty
Q weighting matrix related to the state vector
Q robustness filter for norm-optimal ILC
q output of the normalised uncertainty or

maximising input in the optimal control problem
qi ith component on the diagonal of Q̄

R weighting matrix related to the input vector
R robustness filter for robust ILC
r output of the robustness filter
ri ith component on the diagonal of R̄

S non-stationary Riccati matrix



S diagonal matrix containing the singular values of the system matrix
si ith component on the diagonal of S

T orthogonal matrix with the right singular vectors of the system matrix
U orthogonal matrix with the left singular vectors of the system matrix
u update of the feedforward manipulated by ILC or

minimising input in the optimal control problem
V weighting matrix related to the error
v uncontrolled input
W weighting matrix related to the feedforward input update
w weight related to the feedforward input update
w compensable sum of the error over the iterations
X matrix related to the objective function for robust ILC
x state vector
x a horizontal direction in the Oxyz coordinate system
y a horizontal direction in the Oxyz coordinate system
z the vertical direction in the Oxyz coordinate system
z sum of the error over the iterations

Greek symbols

β weight ratio
γ maximum convergence ratio for robust ILC
∆ the normalised model uncertainty (‖∆‖i2 < 1)
δi ith component on the diagonal of ∆̄

η co-state vector
Θ model error matrix
θi ith component on the diagonal of Θ̄

λ auxiliary co-state vector in the solution of the optimal control problem
µ state-variable related to M

ν state-variable related to N

ξ normalised distance along the trajectory
ρ state-variable related to R

ψ interpolation parameter for the definition of the TVARX model structure
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Chapter 1

Introduction

1.1 Background

Laser welding is the joining of parts through melting of the interface with a
high-power laser beam. A typical application is the joining of sheet metal parts
by keyhole laser welding (see figure 1.1). The keyhole is obtained by focussing
the high-power laser beam (>1 kW) to a small spot (<1 mm2). The seam can
be welded at high speed (>100 mm/s) due to the high power density. Moreover,
the heat affected zone is only small due to the small spot size. However, the laser
beam needs to be manipulated accurately along the weld seam to obtain defect
free welds. Typically, the tracking error should be less than ±0.1 mm in the

laser

keyhole

plasma

molten material

solidified
materialbase material

(a) Schematic overview (b) Robotised laser welding

source: (a) Materials Innovation Institute, (b) Laser Applicatie Centrum

Figure 1.1: Keyhole laser welding
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directions perpendicular to the welding direction (Duley, 1998; Olde Benneker
and Gales, 2007; Römer, 2002). The combination of the small allowable tracking
error and the high welding speed puts high demands on the manipulation of the
laser beam. The trend towards higher power densities and smaller focal spot
sizes even increases the demands on the manipulator further.

From an industrial perspective it is attractive to use industrial robot arms
of the elbow type for the manipulation of the laser beam (see figures 1.1(b)
and 1.2). These robots give access to complex seam geometries, because they
are able to manipulate the welding head in six directions (three linear and three
rotational directions). Moreover, these robots are produced in large quantities,
which makes them less expensive than dedicated manipulators. However, indus-
trial robots with conventional industrial controllers do not meet the accuracy
requirements imposed by many high-speed laser welding tasks. The limited
tracking accuracy is the result of the low bandwidth of conventional indus-
trial controllers. These controllers compute the setpoints for the position of the
robot axes from the desired trajectory for the robot tip using a kinematic model
of the robot mechanism. Next, the axes are controlled along these setpoints,
which should result in the desired motion of the tip. However, errors in the
kinematic model and flexibilities in the links and joints of the robot mechanism
result in tracking errors at the robot tip, even if the axes trace the setpoints
accurately. In particular, the excitation of resonance vibrations resulting from
the flexibilities may result in high-frequency tracking errors. The frequency of
the resonance vibrations depends on the load and configuration of the robot
mechanism. To avoid the excitation of the resonance vibrations, the bandwidth
of standard industrial controllers is taken below the first resonance frequency
of the robot mechanism for the worst case load and configuration. Thereby
the controlled robots only trace the low-frequency components of the trajectory
setpoints, which may result in a considerable tracking error.

Fortunately, the repeatability of industrial robots is good, which means that
the tracking error is approximately the same for each repetitive movement along
the same trajectory. This can be exploited to improve the accuracy of the robot
motion by repeatedly moving along the same trajectory and using the mea-
sured tracking error for the iterative refinement of some input signal, e.g., the
trajectory setpoints or a torque feedforward. This control technique, known as
Iterative Learning Control (ILC), allows reduction of repeatable tracking errors,
even at frequencies beyond the bandwidth of the feedback controller. Academic
research in the field of ILC started in the 1980s (Arimoto et al., 1984). Since
then, numerous ILC algorithms have been proposed and many applications have
been investigated. A considerable part of this research considers the applica-
tion of ILC to robotic manipulators. However, most of the research focusses on
improving the tracking accuracy of the robot’s axes assuming a robot mecha-
nism without flexibilities. As mentioned before, accurate tracking of the axes
may still result in a considerable tracking error of the tip due to errors in the
kinematic model and flexibilities in the robot mechanism. Moreover, the flexi-
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bilities affect the dynamic response of the robot mechanism at high frequencies,
where they induce resonance vibrations. The effect of flexibilities on the robot
dynamics has to be taken into account in the design of ILC to be able to com-
pensate the high-frequency components of the tracking error at the robot tip.
Only few publications on ILC consider the reduction of the tracking error at the
tip of a robot and even fewer consider the compensation of the high-frequency
components of the error. The algorithms that consider the compensation of
high-frequency tracking errors suffer from drawbacks that limit the applicabil-
ity of the algorithms in practice. Those drawbacks will be discussed in more
detail in chapter 2. A practical ILC algorithm for realising high-accuracy motion
of an industrial robot requires further research.

1.2 Objective

The aim of this thesis is the development of ILC algorithms for realising high-
accuracy motion at the tip of an industrial robot. In this section the require-
ments on the ILC algorithms following from this objective are formulated using
the application to the Stäubli RX90 robot, which is used for laser welding, as a
reference. Although the requirements are related to this specific example, they
are formulated sufficiently general to be suited for many other applications of
ILC.

Figure 1.2 shows a picture of the Stäubli RX90 robot carrying a laser welding
head. The laser welding head focusses the high-power laser beam and the focus
point should trace the weld seam of the product. The tracking error of the focus
point with respect to the weld seam is measured with a seam-tracking sensor,
which is integrated in the welding head. The robot and the sensor are described
in more detail in chapter 5. As mentioned previously, the tracking error should
be less than ±0.1 mm in the directions perpendicular to the welding direction
to obtain defect free welds. Measurements of the tracking error show that the
Stäubli RX90 robot controlled by the standard industrial CS8 controller does
not meet the required accuracy along typical weld seam trajectories at typical
welding velocities (> 50 mm/s). The tracking error is mainly the result of
the low bandwidth of the CS8 controller. Reducing the tracking error to the
required level calls for an ILC algorithm that reduces the frequency components
of the tracking error beyond this bandwidth. Below the bandwidth the closed-
loop dynamics of the robot and controller are linearised by the high gain of the
controller, but at higher frequencies the closed-loop dynamics depend on the
configuration of the mechanism. For example, the closed-loop bandwidth and
the resonance frequencies of the mechanism depend on the robot configuration.
The ILC algorithm should be able to cope with these configuration dependent
dynamics to reduce the tracking error to the required level. In this work the non-
linear robot dynamics are approximated as linear time-varying (LTV) dynamics
to confine the complexity of the ILC design. The non-linear dynamics of the
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robot

welding head with integrated sensor

product

Figure 1.2: The Stäubli RX90 robot carrying a welding head with integrated
seam-tracking sensor

robot can be approximated as LTV, because only small deviations from the
large-scale repetitive motion are considered. Thus, it is demanded that the ILC
algorithm should be applicable to a system with LTV dynamics to be able to
reduce the tracking error to the required level.

The reduction of the tracking error of the Stäubli RX90 robot by the applica-
tion of ILC should be realised under several constraints resulting from practical
considerations. Those practical considerations put additional requirements on
the ILC algorithm, which are discussed hereafter. The measurement range of the
seam-tracking sensor is limited to ± 4 mm. The accuracy of the Stäubli RX90
robot with its standard controller is in the order of several millimetres and thus
the sensor can just measure the tracking error if no ILC is applied. The tracking
error should also be measurable during the ILC iterations, which means that
the tracking error should not increase during the ILC iterations. Therefore, it
is demanded that the ILC algorithm should reduce the tracking error mono-
tonically. During the iterations in which the error is not reduced sufficiently
by ILC, the Stäubli RX90 robot cannot be used for welding. Therefore it is
demanded that the tracking error is reduced to the desired level in a limited
number of iterations, preferably less than 10 iterations. The standard industrial
CS8 controller for the Stäubli RX90 robot is tuned for reliable, durable and
stable robot motion. ILC is intended as an add-on to this industrial controller
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to improve the tracking accuracy. It is thus demanded that the ILC algorithm
can be applied to the Stäubli RX90 robot operating in closed-loop with the
standard industrial CS8 controller without adding feedback action. Finally, the
ILC algorithm should be implementable on a contemporary PC to obviate the
need of dedicated (expensive) computation hardware. Therefore it is demanded
that the ILC algorithm is computationally efficient.

Summarising, the following requirements are imposed on the ILC algorithm:

• The ILC algorithm should be applicable to systems with LTV dynamics,

• The ILC algorithm should reduce the tracking error monotonically to a
small final value,

• The ILC algorithm should reduce the tracking error to the desired level
in a limited number of iterations,

• The ILC algorithm should be applicable to an industrial robot operating
in closed-loop with its standard controller without adding feedback,

• The ILC algorithm should be computationally efficient.

An ILC algorithm that meets these requirements is suited for application to the
Stäubli RX90 robot that is used for laser welding. Moreover, such ILC algorithm
is more generally applicable, e.g., to other types of industrial robots, to other
applications of industrial robots and to other (mechanical) systems with similar
dynamic behaviour.

1.3 Outline

Chapter 2 starts with a discussion of some general properties of ILC and an
introduction of the terminology that is used throughout the thesis. The chapter
continues with a review of existing literature on ILC, in particular literature
on the application of ILC to robotic manipulators is considered. Subsequently,
the suitability of the existing ILC algorithms for satisfying the objective of this
work is discussed. Finally it is concluded which developments are required to
obtain ILC algorithms that satisfy the objective of this work. Based on those
requirements two model-based ILC algorithms are developed in chapters 3 and 4.

In chapter 3 a norm-optimal ILC algorithm for LTV dynamic systems is
developed. The objective of the norm-optimal ILC algorithm is formulated as
the iterative minimisation of an objective function that is related to the norm of
the error in the next iteration, which is predicted from an LTV dynamic model.
The growth of the feedforward is limited by including the norm of the feedfor-
ward update in the objective function. After the formulation of the objective,
a computationally efficient implementation of the norm-optimal ILC algorithm
for LTV dynamic systems is proposed. Finally, the convergence properties of
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the norm-optimal ILC algorithm are analysed and used to formulate guidelines
for the tuning of its parameters.

In chapter 4 a robust ILC algorithm for LTV dynamic systems is developed.
The objective of the robust-ILC algorithm is formulated as the reduction of
the tracking error of a system with LTV dynamics and a specified (bounded)
model uncertainty. Furthermore, a condition is derived under which the reduc-
tion of the error is guaranteed even for the worst case effect of the bounded
model uncertainty. Thereafter, a computationally efficient implementation of
the robust ILC algorithm for LTV dynamic systems is proposed. Moreover, an
efficient algorithm for checking the convergence of the error is derived. Finally,
the convergence properties of the robust ILC algorithm are analysed and used
to formulate guidelines for the tuning of its parameters.

The contribution of chapters 3 and 4 is not limited to the specific appli-
cation considered in this thesis. The algorithms are applicable to any system
with LTV dynamics. In the subsequent part of the thesis the application of
the developed algorithms to the Stäubli RX90 robot is considered. In chapter 5
the robot is described in detail and its dynamics are modelled. These models
are used for the implementation of the developed norm-optimal and robust ILC
algorithms. The experimental results from the application of those algorithms
to the Stäubli RX90 robot are described and discussed in chapter 6. The re-
ported results show the suitability of the proposed algorithms for satisfying the
objective of this thesis.

Finally, in chapter 7, conclusions are drawn from the work presented in the
preceding chapters and several directions for further research are discussed.



Chapter 2

Iterative Learning Control

In this chapter existing literature on ILC is reviewed to find ILC algorithms
that are suited for the objective of this work. Previous to the literature review,
in section 2.1, some general properties of ILC are discussed along with an in-
troduction of the terminology that is used throughout the literature review and
the rest of the thesis. Section 2.2 gives an overview of the different types of ILC
algorithms that have been proposed in literature. The literature that considers
the application of ILC to robotic manipulators is reviewed in section 2.3. In sec-
tion 2.4, the advantages and disadvantages of the reviewed ILC algorithms are
summarised. Two algorithms are selected that satisfy most of the requirements
following from the objective of this work, though further development of those
algorithms is needed to satisfy all requirements. The discussion is closed with a
preview of the steps that are taken in this thesis to realise these developments.

2.1 Terminology

2.1.1 General

Iterative Learning Control (ILC) is a control technique to reduce the tracking
error of systems that trace the same trajectory repeatedly or systems that are
affected by the same disturbance repeatedly. In each iteration a feedforward
input signal is applied which is computed by the ILC algorithm from recordings
of the tracking error and the feedforward in the previous iteration(s). A well
designed ILC algorithm makes the tracking error decrease over the iterations.
The ILC algorithm is also referred to as the learning operator. Signals or systems
that do not change over the iterations are referred to as iteration-invariant.
Commonly, ILC is applied in addition to a feedback controller. The feedback
controller stabilises the system and ILC improves the tracking performance.
Mostly, the feedforward, which is updated by the ILC algorithm, is either an
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addition to the output of the feedback controller or a correction of the setpoints
for the feedback controlled system.

The iteration for which the feedforward is computed is referred to as the cur-
rent iteration. The tracking error that is measured in the previous iteration(s)
provides information to predict the tracking error in the current iteration at
future time steps, which clearly distinguishes ILC from conventional feedback
control. An ILC algorithm that computes the feedforward input at a certain
time instance in the current iteration using only recordings of the feedforward
and the tracking error in previous iterations up to that time instance is called a
causal ILC algorithm. Causality limits the performance of ILC, e.g., for proper
systems the performance of causal ILC is limited by Bode’s integral theorem
(see Norrlöf and Gunnarsson, 2005).

ILC is closely related to repetitive control (RC), which is also a control
technique for reducing repetitive errors. The main difference between RC and
ILC is the initialisation of the system’s state. The state is assumed to be
identical at the beginning of each iteration for ILC, while for RC the iteration
starts with the state from the end of the previous repetition.

2.1.2 Classification of ILC algorithms

ILC algorithms can be classed according to the use of data from the current
and previous iterations for the computation of the feedforward update. This
classification is commonly used in literature. A first order ILC algorithm only
uses recordings of the feedforward and the measured tracking error from the
previous iteration. A higher-order ILC algorithm uses recordings of the feed-
forward and the measured tracking error from multiple previous iterations. A
Current Iteration Tracking Error (CITE) ILC algorithm also uses recordings of
the tracking error in the current iteration for the computation of the feedfor-
ward. CITE ILC thus includes a feedback loop and it is not a pure feedforward
control technique. Higher-order ILC or CITE ILC are useful to reduce the ef-
fect of iteration-varying disturbances or dynamics; CITE ILC is able to respond
directly to iteration-varying disturbances and higher-order ILC is able to aver-
age iteration-varying disturbances over multiple iterations. If all disturbances
and the dynamics are iteration-invariant, then any higher-order ILC algorithm
and any CITE ILC algorithm can be converted to an equivalent first-order ILC
algorithm as shown by Phan et al. (2000). In this thesis it is assumed that all
disturbances and the system dynamics are iteration-invariant and therefore only
first-order ILC is considered.

Alternatively, ILC algorithms can be classed according to the use of model
information. This classification is used for the discussion of ILC algorithms in
section 2.2, but it is not commonly used in literature. Gain-type ILC algorithms
update the feedforward with a gain times the error, the derivative of the error
or the integral of the error in the previous iteration(s). The gain is selected
such that the error converges for the dynamics of the controlled system. Model-
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type ILC algorithms employ a model of the dynamics of the controlled system
for the computation of the feedforward update from the error in the previous
iteration(s). Commonly, the feedforward is computed from the error using some
kind of inverse of the modelled dynamics. Adaptive-type algorithms do not only
update the feedforward, but also the algorithm itself from the recordings of the
feedforward and the tracking error in previous iteration(s). Mostly, adaptive-
type ILC algorithms are gain-type or model-type ILC algorithms, where the
gain or the model is updated after each iteration.

2.1.3 Types of convergence

Consider the sampled vector ek
i of the tracking error, where the superscript

k denotes the iteration index and the subscript i denotes the time-index with
i = 1 . . . Ni. The error converges if it approaches a finite value when the iter-
ations go to infinity, i.e., limk→∞ ek

i = e∞i is finite for all i. The error diverges
if the error does not approach a finite value. The limit value of the error (e∞i )
is referred to as the final error. A well-designed ILC algorithm should result
in convergence of the tracking error. Furthermore, a well-designed CITE ILC
algorithm should also result in stable closed-loop dynamics.

In literature the convergence of the error is commonly proved by showing
that some norm of the difference between the error and its final value converges
to zero. The error converges monotonically if for every iteration this norm is
smaller than the norm in the previous iteration. The ratio between the norm in
one iteration and the previous iteration is referred to as the convergence ratio
and its inverse as the convergence rate. Two norms are frequently used in ILC
literature; the 2-norm and the λ-norm. Hereafter those norms are defined for
discrete time signals, similar norms for continuous time signals are used in ILC
literature as well. The 2-norm of the error in iteration k is defined as

∥

∥ek
∥

∥

2
=

√

√

√

√

Ni
∑

i=1

ek
i

T ek
i . (2.1)

The 2-norm equals
√
Ni times the root mean square (RMS) value of the error.

The λ-norm is defined as

‖ek‖λ = sup
0≤i≤Ni

exp(−λi)‖ek
i ‖∞, (2.2)

where ‖ · ‖∞ denotes the maximum absolute component of a vector. The λ-
norm thus weights the maximum components of the error at each time instant
with a weight that decreases exponentially over time and takes the supremum
of the result. The λ-norm of the error could decrease if the error decreases only
slightly at low i while it increases considerably at large i. Thus, even if the λ-
norm of the error converges monotonically to zero, then the error can grow very
large at some time instances before it converges to zero. This property of the
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λ-norm has been pointed out by several authors (Elci et al., 2002; Harte et al.,
2005; Hätönen et al., 2004; Longman, 2000; Norrlöf and Gunnarsson, 2002c;
Owens et al., 2000; Songschon and Longman, 2003). In this work the described
convergence behaviour of the λ-norm of the error is considered unacceptable
and the term monotonic convergence is used to refer to monotonic convergence
of the 2-norm of the difference between the error and its final value.

Even monotonic convergence of the 2-norm of the error does not imply that
the maximum absolute value (MAX) of the error converges monotonically. Con-
sidering the objectives of this thesis (see section 1.2), it would thus be better
to demand monotonic convergence of the ∞-norm of the error than its 2-norm.
Still, convergence the 2-norm of the error is demanded for the design of the ILC
algorithms in this thesis, because the use of the 2-norm facilitates the computa-
tion of the optimal feedforwards for the ILC algorithms developed in chapters 3
and 4. Moreover, large errors contribute more to the value of the 2-norm than
small errors due to the quadratic nature of the norm and thus the reduction of
large errors is prioritised over the reduction of small errors.

2.1.4 Convergence analyses

The application of ILC to many kinds of systems has been considered in litera-
ture, e.g., continuous-time or discrete-time systems, linear time-invariant (LTI),
linear time-varying (LTV) or non-linear systems. The proof of convergence of
the error is mostly related to the kind of system to which ILC is applied.

The proof of convergence for ILC applied to LTI and LTV systems is some-
times based on the use of the λ-norm (e.g., Arif et al., 2003; Arimoto et al., 1984).
It is shown that the application of the proposed ILC algorithm results in mono-
tonic convergence of the λ-norm over the iterations. As discussed previously,
monotonic convergence of the λ-norm may result in undesirable convergence be-
haviour of the error, where the error grows large at some time-instances before
it converges.

The proof of convergence for ILC applied to LTI systems is often based on
the frequency domain transform (e.g., Bukkems et al., 2005; Van Dijk et al.,
2001; Kavli, 1993; De Luca et al., 1992; De Luca and Ulivi, 1992). This allows
concepts from the conventional frequency domain analysis of feedback controlled
LTI systems to be used for the analysis of ILC. However, the frequency domain
analysis implicitly assumes that signals are periodic or their length is infinite,
while ILC deals with non-periodic finite iterations. Nevertheless, the conver-
gence of the error away from the boundaries of long iterations can be predicted
reasonably well from the convergence of its frequency domain transform as dis-
cussed by, e.g., Dijkstra (2004); Longman (2000). Transients at the start and
end of the trajectory should be considered carefully. Convergence of the error
for all frequencies implies convergence of the 2-norm of the error by Parseval’s
theorem (Norrlöf and Gunnarsson, 2002c).

The proof of convergence for ILC applied to discrete-time LTI and LTV
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systems is often based on a matrix description (e.g., Beigi, 1997; Phan et al.,
2000). In this description all time instances of a signal in one trial are concate-
nated into a single vector. A linear dynamic system is represented by a matrix
that relates a vector containing the system’s inputs to the vector containing the
system’s outputs. Convergence can be derived from properties of the matrix
that relates the error in one iteration to the error in the next iteration. The
error converges if the spectral radius of this matrix is less than 1 and the error
converges monotonically if its spectral norm is less than 1. The spectral norm
is the matrix-norm induced by the 2-norm of a vector and is denoted as ‖·‖i2
in this thesis. Several terms are used to refer to the matrix description, e.g.,
matrix form (Elci et al., 2002; Longman et al., 2003; Longman, 2000; Norrlöf
and Gunnarsson, 2002c,a, 2005), super-vector notation (Hätönen et al., 2004)
or lifted plant notation (Dijkstra, 2004; Harte et al., 2005; Hätönen et al., 2006;
Tousain et al., 2001). In this thesis the term ’lifted ’ is used. The lifted system
description is used extensively in this thesis and is described in more detail in
section 3.1.

The proof of convergence for ILC applied to non-linear systems is mostly
based on some special property of the non-linear dynamics. Examples are posi-
tive systems, passive systems, or systems for which the adjoint dynamics equal
the time-reverse dynamics. Positive systems (Arimoto et al., 1985; Hätönen
et al., 2006; Owens and Feng, 2003) are systems where, for any input, the inner
product of the input and output is larger than a finite positive constant times
the norm of the input. Passive systems (Arimoto et al., 2000; Hamamoto and
Sugie, 2002) are systems where, for any input, the inner product of the input
with the output is larger than a positive constant times the norm of the output.
Examples of systems with adjoint dynamics that equal the time-reverse dynam-
ics are SISO LTI systems (Ye and Wang, 2005) and Hamiltonian systems with
a Hamiltonian that is symmetric with respect to the mid-time of the iteration
(Fujimoto and Sugie, 2003).

A special type of non-linear dynamics, which is often considered in ILC
literature, is the dynamics of a rigid serial robot, i.e., a series of rigid bodies
interconnected by actuated hinges (e.g., Bondi et al., 1998; Choi and Lee, 2000;
Hamamoto and Sugie, 2002; Tayebi, 2004). The dynamics of a rigid robot are
positive and passive. Furthermore the adjoint dynamics equal the time-reverse
dynamics under certain conditions (Fujimoto and Sugie, 2003).

Incorrect modelling of the response of a system to part of the feedforward
could lead to divergence of that part of the feedforward by the application of
ILC. Two techniques are often applied to solve this problem; A robustness filter
is used to filter out the part of the feedforward to which the response is unknown
or the feedforward is limited to a certain set of basis functions. The consequence
of the elimination of part of the feedforward is mostly that part of the error
cannot be compensated, resulting in a non-zero final error. For example, if the
high-frequency dynamics of a system are unknown, then a low-pass robustness
filter could be applied to the feedforward, or the feedforward could be limited to
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a low-frequency basis. This approach leads to convergence of the feedforward,
but, because the feedforward does not contain high-frequency components, the
high-frequency part of the error cannot be compensated, which typically results
in a non-zero final error.

2.2 Algorithms

Although the principle of ILC is straightforward, the development of the method
started only in the last decades of the twentieth century. A US patent on
’Learning control of actuators in control systems’ by Garden, accepted in 1971,
patented the idea to store a ’command signal’ in a computer memory and to up-
date this command signal iteratively using the error between the actual response
and the desired response of the error. The first academic contribution on ILC
is a Japanese paper by Uchiyama in 1978. The real start of academic research
on ILC was the paper of Arimoto et al. (1984), which is generally considered
to be the first academic publication on ILC in English. In this publication the
concept of ILC was inspired by the human ability to learn from mistakes. Since
this initial publication, ILC has been a very active research area and many al-
gorithms and applications have been investigated. The ILC literature review
of Moore (1998) lists 254 references and the literature on ILC has grown ever
since. The following discussion of ILC algorithms gives an overview of the most
important types of ILC algorithms found in literature. The ILC algorithms are
classed according to the use of model information.

2.2.1 Gain-type ILC algorithms

The algorithm proposed in the initial publication by Arimoto et al. (1984) is a
gain-type algorithm. The feedforward is updated by a gain times the derivative
of the error at the same time instant in the previous iteration. Notwithstanding
the simple implementation, convergence of the λ-norm of the error is proved if
the gain satisfies some condition in relation to the system dynamics. For the
application to a mechanical system Arimoto et al. (1984) update the feedforward
current by the derivative of the velocity error. The algorithm thus requires
the measurement of the acceleration, which could be noisy. Kawamura et al.
(1988) propose a modification of the algorithm where the feedforward update is
proportional to the derivative of the position error. Several other modifications
to the original algorithm have been studied. Arimoto et al. (1985) update
the feedforward with a term proportional to the error and its derivative. Arif
et al. (2003); Wang (1995) update the feedforward with a term proportional
to the error, its time derivative and its second order time derivative. Arimoto
(1990) uses the error and its integral instead. Arif et al. (1999, 2000) add a
term proportional to the tracking error of a model of the system. Driessen and
Sadegh (2002) consider constraints on the feedforward and its time derivative
and Xu and Yan (2003) consider the application to singular systems. A discrete
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time equivalent of the algorithm of Arimoto et al. (1984) is analysed by Huang
et al. (2002). In all the aforementioned publications, the convergence of the
λ-norm of the error is proved, but monotonic convergence of (the 2-norm of)
the error is not guaranteed.

Fang and Chow (1998); Galkowski et al. (2003); Kurek and Zaremba (1993);
Kurek (2000); Li et al. (2005) propose discrete-time gain-type ILC algorithms
that update the feedforward with a term proportional to the error in the previ-
ous iteration and a term proportional to the state (error) in the current iteration.
These algorithms are thus CITE ILC algorithms. The evolution of the system
state and the tracking error over time and over the iterations can be written
as a Roesser-type model, which is a known model structure from 2D-systems
theory. It is proved that the error converges to zero when the iteration number
goes to infinity if the gains of the algorithm satisfy some condition in relation to
the system dynamics. However, monotonic convergence of the error is not guar-
anteed, except for a special selection of the gains for which the error converges
to zero in one trial.

Arimoto et al. (1985, 2000) show that monotonic convergence of the error can
be achieved by a gain-type ILC algorithm if it is applied to a passive or positive
system. Each iteration the feedforward is updated with a term proportional
to the error in the output in the previous iteration. Since the dynamics of a
rigid robot satisfy the passivity property its tracking can be improved by such
gain-type ILC algorithm. Miyazaki et al. (1986) consider robotic systems with
flexibility in the drives. The relation between the motor torque and the arm
angle does not satisfy the passivity property, but the relation between the motor
torque and the motor angle and the relation between the motor angle and the
arm angle are passive. A two stage gain-type ILC procedure is proposed. In
the inner loop the motor torque is updated to get the required motor position.
In the outer loop the motor angle is updated to make the arm angle match the
desired position.

Monotonic convergence of the error can also be achieved by gain-type ILC
if the adjoint dynamics of the system equal the time-reverse dynamics. Each
iteration the tracking error is reversed in time, multiplied by a suitable gain,
applied as feedforward and the time-reverse of the resulting tracking error is the
new feedforward update. This procedure is suited for self-adjoint Hamiltonian
systems (Fujimoto and Sugie, 2003) and SISO LTI systems (Ye and Wang, 2005).
In case the time-reversed tracking error is not acceptable as an feedforward
input for the real system, a model of the system can be used to compute the
feedforward update.

Frequency domain analysis can be used to design gain-type ILC algorithms
that result in monotonic convergence of the error of an LTI system. Mita and
Kato (1985); Togai and Yamano (1985); Wada et al. (1993) update the feed-
forward by a gain times the error in the previous iteration and use frequency
domain analysis and a model of the system to tune the gain such that the error
converges in the frequency range of interest (mostly the low-frequency range). A
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robustness filter is applied to filter out the feedforward components at frequen-
cies where the convergence condition is violated (mostly at high-frequencies).
The frequency range of convergence can be extended by using a more complex
transfer function instead of a single gain as proposed by, e.g., Elci et al. (2002);
Longman (2000); De Luca et al. (1992). Again, frequency domain analysis can
be used to tune the gains of the transfer function such that convergence of the
error is obtained in the frequency range of interest.

2.2.2 Model-type ILC algorithms

Model-type ILC algorithms employ a model of the system dynamics in the ILC
algorithm. These ILC algorithms are thus more complex than gain-type ILC
algorithms, but model-type ILC algorithms have other advantageous proper-
ties. For example, monotonic convergence with a high-convergence rate can be
realised by model type ILC.

The most straightforward implementation of model-type ILC is the compu-
tation the feedforward update that is required to eliminate the measured error
by multiplication of the error with the inverse of a model of the system dynam-
ics (see, e.g., Kavli, 1993; Lange and Hirzinger, 1995, 1999b; Markusson et al.,
2002; Norrlöf and Gunnarsson, 2001; Pervozvanskii and Avrachenkov, 1997).
For non-linear systems the inverse of the linearised dynamics of the model can
be used (Avrachenkov, 1998; Avrachenkov and Longman, 2003). The inverse of
a non-minimum-phase system can be obtained from non-causal filtering (Deva-
sia et al., 1996; Ghosh and Paden, 2004; Markusson et al., 2002), the Zero
Phase Error Tracking Control (ZPETC) algorithm (Bukkems et al., 2005; Van
Dijk et al., 2001; Tomizuka, 1987) or the lifted system description (Harte et al.,
2005). A pseudo-inverse of the system-dynamics can be used to handle over- or
underdetermined systems (Avrachenkov and Longman, 2003). Commonly, the
dynamics of the model do not exactly represent the dynamics of the real system.
Using the inverse of the model to compensate for the error of the real system
might result in divergence of the error if the model error is large. In most publi-
cations a bound on the model error is derived for which convergence of the error
can be guaranteed. The error may diverge if this condition is violated. The al-
lowable model error can be increased by the use of a robustness filter. Bukkems
et al. (2005); Van Dijk et al. (2001); Kavli (1993); Markusson et al. (2002); Per-
vozvanskii and Avrachenkov (1997) apply a low-pass filter to obtain robustness
to errors in the model of the high-frequency dynamics. The application of a low-
pass filter also decreases the large high-frequency gain of the inverse dynamics
of proper systems, which is useful to attenuate the effect of iteration-varying
high-frequency load and measurement disturbances (Norrlöf and Gunnarsson,
2001). Alternative methods to decrease the high-frequency gain of the inverse
dynamics are the application of an inverse Kallman filter (Lange and Hirzinger,
1995, 1999b) or regularisation of the pseudo-inverse (Avrachenkov and Long-
man, 2003; Ghosh and Paden, 2004).
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Norm-optimal ILC (NILC) is a model-type ILC method that is based on
the iterative minimisation of an objective function that is related to the 2-norm
of the tracking error in the current iteration. The tracking error in the current
iteration is predicted from the measurement of the error in the previous iter-
ation(s) and a model of the dynamic response of the controlled system. Note
that inversion-based ILC is a special type of NILC, because the feedforward up-
date that minimises the 2-norm of the error for a non-singular system is equal
to the error times the inverse of the system model. NILC provides an elegant
method for the design of ILC for overdetermined, underdetermined and non-
minimum-phase systems. Amann et al. (1996a,b, 1998); Buchheit et al. (1994);
Gunnarsson and Norrlöff (2001); Gunnarsson et al. (2007); Norrlöf and Gun-
narsson (2002a) propose NILC algorithms that include the feedforward (update)
in the objective function, which limits the (growth of the) feedforward. The ap-
proach is similar to linear-quadratic feedback control. The minimisation of an
objective function that includes the feedforward (update), yields a feedforward
(update) that is equal to the error times a regularised pseudo-inverse of the sys-
tem. The regularisation parameter depends on the weight on the feedforward
(update) in the objective function. The convergence rate can be increased by
including the prediction of the error in future iterations (Amann et al., 1998)
or the feedforward in multiple previous iterations (Fang et al., 2005) in the ob-
jective function. Dijkstra (2004); Lee et al. (1999, 2000); Tousain et al. (2001)
use NILC for the minimisation of the norm of the error of a system that is
affected by iteration-varying noise. The noise is split in a part that should be
compensated, typically the iteration-invariant part, and a part that should not
be compensated, typically the iteration-varying part and/or the high-frequency
part of the error. The minimisation results in an observer-based ILC algorithm,
similar to a Kallman-filter. Gunnarsson and Norrlöff (2001) show that the re-
jection of iteration-varying disturbances is improved by including the error in
multiple past iterations in the objective function. Lee et al. (2000) include
constraints on the error, the feedforward, the feedforward update and the time-
derivative of the feedforward in the design of NILC. The feedforward of NILC
should minimise the specified objective function. This optimal feedforward is
often computed using the lifted system description (see, e.g., Gunnarsson and
Norrlöff, 2001; Gunnarsson et al., 2007; Lee et al., 1999, 2000; Tousain et al.,
2001). The optimal feedforward is computed by multiplication of the lifted error
vector with a lifted matrix that is derived from the lifted matrices associated
with the system model and the weights in the objective function. The number
of elements of the lifted matrices involved in the computations scales quadrati-
cally with the length of the iteration, resulting in a computationally inefficient
algorithms for long iterations. The size of the optimisation problem can be re-
duced by using the singular value decomposition of lifted matrices as proposed
by Kim et al. (2000). Another method to compute the optimal feedforward
efficiently is derived from optimal control theory. The optimal feedforward is
computed from the error using a series of causal and anti-causal convolutions in-
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volving the state-space matrices associated with the system model, the weights
in the norm and the solution of a Riccati matrix convolution. Such algorithm
is proposed by Amann et al. (1996a,b, 1998); Lee et al. (1999) for the compu-
tationally efficient implementation of a CITE NILC algorithm and by Dijkstra
(2004); Hakvoort et al. (2009); Kim et al. (2000) for the implementation of a
first order ILC algorithm. Hatzikos et al. (2004) propose the use of a genetic al-
gorithm for the computation of the optimal feedforward for non-linear systems.
Whichever approach is used to compute the optimal feedforward for proper and
non-minimum-phase systems, the resulting NILC algorithm is non-causal.

The application of model-type ILC may result in divergence of the error if
the difference between the dynamics of the model and the real system is large.
Several authors propose model-type ILC algorithms that explicitly take model
uncertainty into account. These so-called robust ILC (RILC) algorithms guar-
antee convergence of the error for the specified bound on the model uncertainty.
Amann et al. (1996c); Van Dijk et al. (2001); De Roover (1996); De Roover
and Bosgra (2000) design RILC algorithms using conventional robust control
design methods, which are developed for the design of robust feedback control
algorithms. This approach results in causal RILC algorithms. As mentioned
in section 2.1, causality puts a severe limitation on the performance of the
ILC controller. Van Dijk et al. (2001) show that an inversion-based ILC algo-
rithm outperforms such causal RILC algorithm. Van de Wijdeven and Bosgra
(2007a) do not impose the causality constraint on their design of RILC for LTI
systems, yielding an ILC algorithm with better performance. The algorithm
results in guaranteed convergence of the error for systems with limited bounded
uncertainty, though convergence of the error for systems with large bounded
uncertainty cannot be guaranteed. Moore et al. (2005) employ the lifted sys-
tem description for the design of ILC with robust performance in the presence of
iteration-varying disturbances and model uncertainty. The approach results in a
higher-order ILC algorithm that is not restricted to be causal. However, the use
of the lifted description makes the implementation computationally inefficient.

2.2.3 Adaptive-type ILC algorithms

Gain-type and model-type ILC algorithms iteratively refine the feedforward us-
ing the same learning operator in each iteration, whereas each iteration yields
new information for the refinement of the learning operator. Several ILC al-
gorithms have been proposed in literature that update the learning operator
as well. These adaptive-type ILC algorithms are discussed in this subsection.
Besides, some adaptive feedback algorithms that improve the performance of
systems tracing the same trajectory repeatedly have been proposed in liter-
ature. These algorithms are closely related to ILC and these algorithms are
discussed in this subsection as well.

Hätönen et al. (2004); Owens and Feng (2003) propose an adaptive gain-type
ILC algorithm, where the feedforward is updated by a gain times the error in
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the previous iteration(s) one time step ahead. The value of the gain is adapted
such that it minimises a weighted quadratic norm of the gain and the error
in the next iteration. The error converges monotonically if the initial error is
small and a perfect model of the system dynamics is available for the estimation
of the error in the next iteration. Furthermore, the error converges to zero if
the controlled system is positive. Several modifications have been proposed
to improve the properties of the algorithm. Hätönen et al. (2004) propose a
similar CITE ILC algorithm with improved computational efficiency. Hätönen
et al. (2006) propose a modification that results in convergence of the error to
zero for non-positive systems. Harte et al. (2005) propose a model-type version,
where the feedforward update is obtained from the multiplication of the error
with the inverse dynamics of a model and an adapted gain. The error reduces
to zero if the multiplicative error between the real system dynamics and the
model is positive. The proposed adaptive gain-type ILC algorithms are simple
and robust, but the convergence rate slows down considerably when the error
decreases.

A different kind of adaptive-type ILC algorithm is proposed by Norrlöf and
Gunnarsson (2002a); Saab (2004). They assume that the measurement of the
error is affected by iteration-varying noise and aim at minimising the norm of
the undisturbed error. The algorithms result in a kind of Kallman-estimator
for the undisturbed error. The part of the error that is compensated depends
on the uncertainty in its estimation. The uncertainty in the estimation of the
error decreases over the iterations and thus the compensated part of the error
increases.

Another kind of adaptive-type ILC algorithms are model-type ILC algo-
rithms that update the model using the measured dynamic response of the
system to the feedforward applied in the past iteration(s). Kang et al. (2005)
iteratively improve the estimation of the system’s direct feedthrough. The es-
timated direct feedthrough is used for the implementation of an ILC algorithm
resulting in convergence of the λ-norm of the error. The adaptive-type ILC
algorithm proposed by Beigi (1997) employs the lifted system description. In
each iteration the lifted system matrix of the model is updated with the gen-
eralised secant method and the updated lifted system matrix is used to update
the feedforward. Longman et al. (2003) consider the numerical conditioning
of the updating procedures and propose several modifications to improve the
numerical conditioning of the update of the feedforward and the lifted system
matrix. The method of Beigi (1997) becomes computationally inefficient for
long trajectories because of the large dimensions of the lifted system matrix.
Frueh and Phan (2000) propose a more efficient procedure. The feedforward
is constructed from an orthogonal set of basis-vectors and in each iteration the
response of the system to one of the basis-vectors is learned. In the subsequent
iterations the learned dynamic response is used to optimise the contribution
of the basis-vector to the feedforward that minimises the error. The number
of independent basis-vectors is equal to the length of the lifted vector of the
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feedforward. So, theoretically, the number of iterations to obtain the optimal
feedforward is equal to the length of the lifted vector of the feedforward. Fortu-
nately, most of the error can often be reduced in a limited number of iterations
using a limited set of basis-vectors. The efficiency of the estimation of the sys-
tem dynamics can also be improved by exploiting knowledge on the structure
of the system dynamics. For example, Beigi (1997); Gorinevsky et al. (1997)
estimate the dynamics of a time-invariant system, Oh et al. (1988) estimate the
dynamics of a time-varying finite state system using full state measurements
and Markusson et al. (2002) identify the dynamics of a finite-state system using
system identification techniques. Another similar model-based adaptive-type
ILC algorithm is the model reference adaptive learning controller proposed by
Phan and Frueh (1999). The feedforward update is computed from the mea-
sured tracking error and the tracking error predicted by a model. The measured
error converges as desired if the system model is able to predict the measured
error accurately. The difference between the predicted error and the measured
error is minimised in a separate step in which the system model is updated.

Choi and Lee (2000) combine ILC and adaptive control for the application
to a rigid robot. The adaptive control part learns the uncertain parameters of
the dynamic model of a robot and the learned parameters are transferred from
one iteration to the next to compute the feedforward that compensates for the
tracking error resulting from the robot dynamics along the repetitive trajectory.
The ILC part learns a torque feedforward to compensate for iteration-invariant
torque disturbances. The algorithm proposed by Hamamoto and Sugie (2002)
only updates the parameters of the dynamic model of a rigid robot. The model
is used to generate the feedforward for the next iteration, in which the robot
may track a totally different trajectory. The learned parameters are thus reused,
even if a different trajectory is traced in the next iteration. This method thus
overcomes the adverse property of conventional ILC that can only reduce the
tracking error if the same trajectory is traced repeatedly. Several other strate-
gies were proposed in literature to overcome this property of ILC. Arif et al.
(2002); Cheah (2001); Gorinevsky (1995); Gorinevsky et al. (1997); Lange and
Hirzinger (1995, 1999a,b) apply conventional ILC to learn the feedforward that
compensates for the error along several different trajectories. The learned feed-
forwards are used to construct a feedforward controller that is able to generate
the feedforward that reduces the error along new trajectories.

Polushin and Tayebi (2004); Tayebi (2004); Tayebi and Islam (2006) pro-
pose adaptive feedback control algorithms for rigid robots that repeatedly trace
the same trajectory. A PD-feedback controller is combined with a non-linear
feedback controller of which a time-varying parameter is updated between the
iterations. A similar algorithm is proposed by Xu and Xu (2004) for a spe-
cial class of non-linear systems with full-state measurements. The parameters
of the system are assumed to be unknown and iteration-invariant, though the
trajectory may be iteration-varying.

French et al. (1999); French and Rogers (2000); French et al. (2001); Owens
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and Munde (2000); Owens et al. (2000) propose adaptive feedback control al-
gorithms for time-invariant SISO systems that trace the same trajectory re-
peatedly. The algorithms are based on conventional adaptive control concepts
like universal adaptive stabilisation theory and tuning functions design. At the
end of each iteration a set of parameters is transferred to the next iteration,
resulting in a linear rate of convergence of the tracking error over the iterations.
The adaptive algorithms are able to cope with large uncertainty in the model
dynamics. The minimum-phase condition, which is conventionally imposed by
the adaptive control algorithms, is not imposed by the adaptive-type ILC algo-
rithms, because of the repetitive tracking. Nevertheless some other conditions
are imposed on the system dynamics, e.g., the system should be SISO, have a
known relative degree and an upper bound on the plant order should be known.

2.3 Application of ILC to robots

A considerable part of the literature on ILC considers the application to robotic
manipulators. For two reasons ILC is an effective method to improve the track-
ing of industrial robots. In the first place, the repeatability of industrial robots
is often much better than the tracking accuracy. Secondly, most robots in indus-
try perform the same task repeatedly. Many different types of ILC algorithms
are proposed for the application to robotic manipulators, including gain-type,
model-type and adaptive-type ILC. Appendix A provides a list of publications
that consider the application of ILC to robotic manipulators. In most papers it
is shown by simulation or experiments, that ILC is able to reduce the tracking
error of the robot at least one order of magnitude.

In some of the publications ILC algorithms for LTI systems are applied
to robotic manipulators. The tracking error of a single robot link or the low-
frequency components of the tracking error of a multi-axis robot can be reduced
by those algorithms, because the dynamics of a single link and the low-frequency
dynamics of a multi-axis robot operating in closed-loop can be approximated as
LTI. However, at higher frequencies the dynamics of a multi-axis robot cannot
be approximated as LTI. In most publications that describe the application of
ILC to multi-axes robots, the robot is considered as a series of interconnected
rigid bodies and the flexibilities in the robot mechanism is neglected. It is
shown that the application of ILC results in convergence of the error for the
dynamic equations of a series of rigid bodies or for a more general class of
systems like LTV, passive or positive systems. The location of the tip of a rigid
robot is related to the joint angles via a (known) kinematic transformation.
Thus, reduction of the tracking error of the joints suffices to reduce the tracking
error at the robot’s end-effector. Real robots contain flexible components like
joint and drive flexibility (see Hardeman, 2008). As a result, accurate tracking
of the joints does not necessarily imply accurate tracking of the tip, which
is clearly illustrated for an industrial robot by Norrlöf (2000). The flexibilities
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only result in quasi-static deformations at low-frequencies. Deman et al. (1999);
Lange and Hirzinger (1999b) show that this effect can be compensated effectively
by assuming a rigid robot and measuring the position of the tip. However,
the flexibilities affect the dynamic response of the robot at high-frequencies
substantially as they induce mechanical resonance vibrations. Neglecting this
effect for the design of the ILC algorithm may result in divergence of the high-
frequency part of the error. Therefore, in most applications of ILC to a real
robot the feedforward is limited to its low-frequency components, either by the
application of a low-pass filter or by constructing the feedforward input from a
set of low frequency basis functions.

Only few publications explicitly consider the effect of flexibilities on the
robot dynamics for the design of the ILC algorithm. De Luca and Ulivi (1992);
Velthuis et al. (1996); Wada et al. (1993) consider drive flexibility and demon-
strate the necessity of a low-pass robustness filter for realising convergence of
the error, though only the low-frequency part of the error is compensated. ILC
algorithms for the compensation of the high-frequency components of the track-
ing are proposed in literature as well. Miyazaki et al. (1986) propose a gain-type
ILC algorithm for robots with rigid links and flexibility in the transmission. The
motion of the motor-side and the arm-side of the transmission is measured and
improved in two alternating modes. Simulations on a 2DOF robot demonstrate
the (slow) convergence of the tracking error. Cheng and Wen (1993); Gorinevsky
(1995); Gorinevsky et al. (1997); Guglielmo and Sadegh (1996) measure the re-
sponse of the robot tip to a set of basis-functions for the feedforward, while the
robot is moving repeatedly along the same trajectory. The measured response
is used for the implementation of model-type ILC algorithms that reduce the
error including its high-frequency components. Results from simulation and
experiments show that the error can be reduced successfully with this method.
However, many experiments are needed to learn the robot’s response for a set of
basis-function with a wide frequency range and the set of basis-functions grows
with the length of the iteration resulting in demanding computations for long
iterations. Gunnarsson et al. (2007) propose a more efficient method for reduc-
ing the tracking error including its high-frequency components for a single link
with drive flexibility. The tracking error at the link side of the transmission is
estimated from measurements of the motor position and the measured acceler-
ation of the arm. An LTI dynamic model of the single robot link is identified
and this model is used to implement a computationally efficient ILC algorithm
for LTI systems. It is shown that the method effectively reduces the tracking
error at the tip, including its high-frequency components.

Thus, a wide range of ILC algorithms for robotic manipulators are proposed
in literature. Most of them can be used only for reducing the low-frequency
part of the tracking error. For the compensation of the high-frequency part of
the tracking error the effect of flexibilities in the robot mechanism should be
taken into account. ILC algorithms for the compensation of the high-frequency
part of the tracking error of industrial robots have been proposed, but none of
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them is computationally efficient, results in fast convergence of the error and
is applicable to the configuration dependent dynamics of a multi-axis industrial
robot.

2.4 Discussion

In section 1.2 the requirements on the ILC algorithm following from the objec-
tives of this work are formulated. The ILC algorithm should be able to cope
with the dynamics of an industrial robot, which are configuration dependent
and significantly affected by the flexibilities in the robot mechanism. Further-
more, the algorithm should result in monotonic convergence of the error with
a high convergence rate, the algorithm should be computationally efficient and
not introduce any feedback action.

The literature that considers the application of ILC to robotic manipulators
is reviewed in section 2.3. In none of the discussed publications an ILC algo-
rithm is proposed that satisfies all the aforementioned requirements. Therefore,
the potential of the different types of ILC algorithms described in section 2.2
for satisfying these requirements is evaluated in subsection 2.4.1 and it is dis-
cussed which developments are needed to obtain ILC algorithms that satisfy all
requirements. In subsection 2.4.2 the steps taken in the subsequent chapters to
develop such algorithms are outlined.

2.4.1 Existing ILC algorithms

Gain-type ILC algorithms are computationally efficient. No model is needed for
the implementation of these algorithms, although model information is needed
to tune the gains of the algorithm such that the error converges. Mostly conver-
gence of the λ-norm of the error is proved for gain-type ILC algorithms, which,
as discussed in subsection 2.1.3, may result in a growth of the 2-norm of the
error in the initial iterations. Monotonic convergence of the error can be realised
with gain-type ILC for systems with LTI, positive or passive dynamics, but the
dynamics of a feedback controlled industrial robot are in general neither LTI,
passive nor positive. Gain-type ILC is thus not suited to satisfy all requirements
following from the objective of this work.

Model-type ILC can realise monotonic convergence of the tracking error with
a high convergence rate, provided that the system dynamics are modelled suffi-
ciently accurate. This has been demonstrated in literature by several successful
applications of model-type ILC to robotic manipulators. Mostly, an LTI model
of the closed-loop low-frequency dynamics of an industrial robot is used to re-
duce the low-frequency part of the tracking error. It is also shown that an LTI
model of the dynamics of a single robot link can be used to reduce the tracking
error of a single link including the high-frequency components. The advantage
of using an LTI model for ILC is that computationally efficient algorithms of
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model-type ILC for LTI systems are available. However, the closed-loop high-
frequency dynamics of a multi-link industrial robot are not LTI. Those dynamics
can be approximated as LTV for the design of ILC, because only small deviations
from the iterative large scale motion are considered. Model-type ILC algorithms
for LTV dynamics are proposed in literature, but these are not computationally
efficient. The development of a computationally efficient model-type ILC algo-
rithm for LTV systems would yield an algorithm that satisfies the requirements
of this thesis, provided that this algorithm does not involve any feedback action.

A diverse range of adaptive-type ILC algorithms is proposed in literature.
Most adaptive-type ILC algorithms are not suited for the application considered
in this thesis, because they result in a low convergence rate, require feedback
action or they are only suited for LTI dynamics. Two adaptive-type ILC meth-
ods are useful for the objective of this thesis. Firstly, an adaptive model-type
ILC algorithm that updates the model during the iterations would be useful as
it can be used to prevent divergence of the error as a result of model errors.
Secondly, an adaptive-type ILC algorithm that uses the feedforwards learned
by ILC to construct a feedforward controller that is able to reduce the track-
ing error along new trajectories would be useful. Both methods are adaptive
add-ons to model-type ILC. A suitable model-type ILC algorithm should be
developed prior to the addition of these adaptive elements. This thesis focusses
on the development of a suitable model-type ILC algorithm. The development
of additional adaptive elements is suggested for future research.

2.4.2 Developments in this thesis

In the previous subsection it is concluded, that model-type ILC is the most
suited approach for realising the objectives of this work, because monotonic
convergence of the tracking error with a high convergence rate can be realised
with this approach. The development of a computationally efficient implemen-
tation of model-type ILC for LTV systems is needed to satisfy the other require-
ments imposed by the objectives of this work as formulated in section 1.2. The
development of such model-type ILC algorithms is considered in the next two
chapters.

In chapter 3 the design of an computationally efficient NILC algorithm for
LTV systems is considered. NILC is a straightforward method for the design of
ILC, that is considered frequently in literature (see section 2.2). However, the
effect of modelling errors is not taken into account in the design of NILC, which
may lead to divergence of the error. In chapter 4 the design of a computationally
efficient RILC algorithm for LTV systems is considered. The developed RILC
algorithm aims at realising convergence of the error with a specified convergence
rate, even for the worst case effect of the model uncertainty. Thus, in contrast
to NILC, the design of RILC takes the effect of model uncertainty into account.
Inversion-based ILC, which is the third type of model-type ILC discussed in
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section 2.2, is a special case of NILC and this method is not considered separately
in this thesis.

To realise monotonic convergence of the error, the objectives for the NILC
and RILC algorithms are formulated as the minimisation of objective functions
related to the 2-norm of the error. The feedforwards of the ILC algorithms
follow from the minimisation of these objective functions for a prediction of the
error in the current iteration. The prediction of the error is based on a dy-
namic model and the measurement of the error in the previous iteration, such
that no real-time feedback of the error is needed for the implementation of the
ILC algorithms. Computationally efficient algorithms for the computation of
the optimal feedforward update are obtained by the derivation of algorithms of
which the number of computational operations scale linearly with the length of
the iterations. Finally, the convergence properties of the algorithms are inves-
tigated, in particular the convergence rate, the robustness to modelling errors
and the final error. The results from this analyses are used to formulate guide-
lines for selection of the parameters of the ILC algorithms that results in a high
convergence rate and a small final error.

The suitability of the developed algorithms for realising the objective of
this thesis is evaluated experimentally from the applications to the industrial
Stäubli RX90 robot. The experimental setup is described in detail in chapter 5.
This chapter also describes the dynamic model of the robot that is used for the
implementation of the model-based ILC algorithms. The experimental results
from the applications of the developed algorithms to the Stäubli RX90 robot
are reported in chapter 6. Finally, in chapter 7, it is discussed whether the re-
quirements imposed by the objectives of this work are satisfied by the developed
ILC algorithms.
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Chapter 3

Norm-optimal ILC

Norm-optimal ILC (NILC) is a model-type ILC method for the iterative min-
imisation of an objective function that is related to the norm of the predicted
error. The prediction of the error follows from the error that is measured in
the previous iteration and the change of the error resulting from the applied
feedforward, which is predicted using a model of the dynamic response of the
controlled system. The growth of the feedforward can be limited by including
the norm of the feedforward update in the objective function.

Section 3.1 describes the linear time-varying system dynamics considered in
this chapter and the lifted system description is defined. The objective function,
defining the optimal feedforward update for NILC, is formulated in section 3.2.
Algorithms for the computation of the optimal feedforward update are described
in section 3.3. A computationally efficient algorithm of NILC for LTV systems
is presented in subsection 3.3.2. In section 3.4 the convergence properties of the
proposed NILC algorithm are analysed and used to formulate guidelines for the
selection of the parameters of NILC.

The formulated objective function and the convergence analysis in this chap-
ter have been presented in a similar form in literature (see, e.g., Amann et al.,
1996a; Lee et al., 2000). The main contribution of this chapter is the derivation
of a computationally efficient NILC algorithm for LTV systems.

3.1 System description

The computation of the feedforward of NILC is based on the minimisation of an
objective function that is related to the prediction of the error. In this section a
model-based prediction for the error in iteration k + 1 is derived, which is based
on the measurement of the error in iteration k. The error in iteration k + 1,
which is denoted as ek+1

i , depends on the feedforward applied in iteration k + 1,
which is denoted as fk+1

i . The subscript i is the time index and the number of
time-samples in each iteration is Ni. The dynamics of the controlled system are
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assumed to be linear time-varying, iteration-invariant and strictly proper. Thus,
the effect of the feedforward in iteration k + 1 on the error can be modelled by
the following state-space equations

xk+1
i+1 = Aix

k+1
i +Bif

k+1
i , (3.1a)

xk+1
1 = O, (3.1b)

ek+1
i = Cix

k+1
i + di, (3.1c)

where xk
i is the state vector and {Ai, Bi, Ci} are the time-varying state-space

matrices of the model. Note that the error equals di if no feedforward is applied.
This vector di thus describes the initial tracking error along the repetitively
traced trajectory, including the effect of all disturbances and the effect of any
non-zero initial state. The vector di is assumed to be trial-invariant, i.e., it is
assumed that the error is not affected by iteration-varying effects.

The analysis of the iterative behaviour of discrete-time systems controlled
by ILC is facilitated by the use of the lifted system description (see subsec-
tion 2.1.4). In this description, all time samples of a signal in one iteration are
concatenated in a so-called lifted vector. For example, the lifted vector of the
feedforward in iteration k + 1 is defined as

fk+1 =
[

fk+1
1

T fk+1
2

T . . . fk+1
Ni

T
]T
. (3.2)

In the lifted system description a dynamic system is represented by a matrix
that maps the lifted vector of its inputs to the lifted vector of its outputs. The
lifted system equation corresponding to the state-space equations (3.1) is

ek+1 = Gfk+1 + d, (3.3)

where the lifted system matrix G is expressed in terms of the state-space ma-
trices {Ai, Bi, Ci} as
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. (3.4)

Lifted matrices and lifted vectors are assumed to be real-valued in this thesis.
The ILC algorithm updates the feedforward fk using measurements of the

error ek to compensate for the effect of the iteration-invariant disturbance d.
ILC can be considered as a feedback controller operating on the system in the
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iteration-domain, in contrast to a conventional feedback controller that operates
on a system in the time-domain. The internal model principle states that if a
feedback system is to reject a certain disturbance, it should contain a model of
the mechanism that generates the disturbance. A constant disturbance can be
generated by an integrator. According to the internal-model principle the ILC
algorithm should thus contain an integrator over the iterations to compensate
for the iteration-invariant disturbance d. This is realised by using the following
feedforward update equation

fk+1 = fk + uk+1, (3.5)

where uk+1 denotes the feedforward update for iteration k + 1. Combining this
update equation with system equation (3.3) for iterations k and k + 1, yields
the following expression for the error in iteration k + 1

ek+1 = Guk+1 + ek. (3.6)

The error in iteration k + 1 is predicted using this expression. The system
matrix of the real system is assumed to be unknown and the prediction of the
error, which is denoted as êk+1, is obtained by replacing the system matrix G

by the estimated system matrix Ĝ, yielding

êk+1 = Ĝuk+1 + ek. (3.7)

In section 3.3 this equation for the error estimate is used for the derivation
of the optimal feedforward update. The difference between the error estimate
and the real error resulting from the application of this feedforward depends
on the difference between the real system dynamics and the estimated system
dynamics. This difference is expressed by the additive model error matrix Θ,
which is defined as

Θ = G− Ĝ. (3.8)

The additive model error matrix is used in section 3.4 for the analysis of the
effect of a model error on the convergence of the error.

3.2 Objective

The objective of NILC is the monotonic reduction of the tracking error. This
could be realised by the iterative application of the feedforward that minimises
the 2-norm of the error in the next iteration as predicted by the model. However,
this NILC strategy might lead to large feedforward updates if the modelled
dynamic response of the tracking error to certain components of the feedforward
is small, e.g., the response to the feedforward components at the anti-resonance
frequencies or the response to the high-frequency components of the feedforward
for a proper system model. Amann et al. (1996a,b, 1998) propose a strategy to
overcome this problem, where the objective of NILC is defined as the iterative
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minimisation of a weighted sum of the 2-norm of the error and the 2-norm of
the applied feedforward update. This way, the tracking error is reduced while
the growth of the feedforward is limited. This strategy is adopted in this work
and thus the optimal feedforward update for NILC is defined as

ǔk+1 = arg min
uk+1

J (n)k+1
, (3.9)

where J (n)k+1
is the following objective function

J (n)k+1
, êk+1T V êk+1 + uk+1T Wuk+1. (3.10)

Matrices V and W are block-diagonal lifted matrices corresponding to the time-
varying weights Vi and Wi. The effect of these weights on the convergence rate
and the robustness of the algorithm is analysed in section 3.4. The error estimate
êk+1 is obtained from equation (3.7). Algorithms for the solution of the optimal
feedforward update ǔk+1 are considered in the next section.

3.3 Solutions of the optimal feedforward update

The optimal feedforward update should minimise the objective function in equa-
tion (3.10) according to equation (3.9) for the system model in equation (3.7).
In this section two algorithms to solve the optimal feedforward are derived,
yielding two algorithms for NILC.

An explicit expression for the optimal feedforward update can be derived
using the lifted system description, which has been demonstrated previously
by Lee et al. (2000). The derivation of this lifted expression for the optimal
feedforward update is described in subsection 3.3.1 and the expression is used
for the analysis of the convergence properties of NILC in section 3.4. However,
the computation of the feedforward update from the lifted expression requires
computations with lifted matrices, which makes the algorithm computationally
demanding for long iterations.

A more efficient algorithm for the computation of the optimal feedforward
update can be derived from the lifted algorithm by using the state-space ma-
trices associated with the lifted system matrix, which has been demonstrated
by Dijkstra (2004) for a system with LTI dynamics. An extension of this al-
gorithm to LTV systems is derived by the author and is published previously
(Hakvoort et al., 2009). An alternative computationally efficient algorithm for
the computation of the optimal feedforward for NILC is proposed by Amann
et al. (1996a). Their algorithm uses the state-space representation of the system
and the derivation is based on optimal control theory. However, the algorithm
proposed by Amann et al. (1996a) uses measurements of the error from the cur-
rent iteration for the computation of the feedforward and thus it does not satisfy
the requirements on the ILC algorithm formulated in section 1.2. A similar al-
gorithm that only uses measurements of the error from the previous iteration
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is proposed in subsection 3.3.2. This algorithm is comparable to the algorithm
proposed by Yang et al. (2003), though it is developed independently. Yang
et al. (2003) apply the algorithm to the control of the temperature of a wafer.
This application is quite different from the application considered in this work,
which made the publication unknown to the author at the time of development
of the algorithm in section 3.3.2. The applicability to both the motion control of
a robot and the temperature control of a wafer shows the wide range of possible
applications of the algorithm. The algorithm proposed in subsection 3.3.2 is
computationally efficient, suited for LTV systems and uses no current iteration
data. These properties meet the requirements on the algorithm imposed by the
objectives of this work (see section 1.2). The other requirements on the ILC
algorithm following from the objective of this work concern the convergence of
the error. The convergence properties of NILC are analysed in section 3.4. The
suitability of the proposed NILC algorithm for the objectives of this work is
evaluated experimentally by the application to the Stäubli RX90 robot. The
results of these experiments are presented in chapter 6.

Summarising, subsection 3.3.1 describes the derivation of the optimal feed-
forward update from the lifted system equations, which yields an explicit ex-
pression for the optimal feedforward update, and subsection 3.3.2 describes the
derivation of the optimal feedforward update using optimal control theory, yield-
ing an efficient algorithm for the computation of the optimal feedforward update.

3.3.1 Solution using the lifted description

In this section the optimal feedforward update for NILC is solved using the
lifted system description. Substitution of lifted equation (3.7) for error estimate
in lifted equation (3.10) for the objective function yields

J (n)k+1
=

(

Ĝuk+1 + ek
)T

V
(

Ĝuk+1 + ek
)

+ uk+1T Wuk+1. (3.11)

This expression depends only on the error in the previous iteration ek, which
is measured, and the feedforward update uk+1, which has to be computed.
The objective function has a minimum with respect to uk+1 in case its second
derivative with respect to uk+1 is positive definite, i.e.,

2Ĝ
T
V Ĝ + 2W > 0. (3.12)

This condition can be satisfied by selecting positive definite matrices W and V .
The minimising feedforward update is obtained by equating the derivative of
J (n)k+1

with respect to uk+1 to zero. This yields the following lifted expression
for the optimal feedforward update

ǔk+1 = −Lek, (3.13)

where the learning filter L is defined as

L =
(

Ĝ
T
V Ĝ + W

)−1

Ĝ
T
V (3.14)
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The optimal feedforward update is thus equal to a regularised pseudo-inverse of
Ĝ times the tracking error in the previous iteration.

The explicit expression for the feedforward update in equation (3.13) is used
for analysis of the robustness and convergence properties of NILC in section 3.4.
However, the expression is not suited for practical implementation of NILC for
long iterations, because the number of elements of the lifted matrices in this
equation is proportional to the square of the length of the iteration and thus
the computation is time-consuming for long iterations.

3.3.2 Solution using optimal control theory

In this section the equations that define the optimal feedforward update for
NILC are rewritten to a finite-horizon optimal control problem. This control
problem is solved using an existing optimal control algorithm, yielding a com-
putationally efficient algorithm to compute the optimal feedforward update for
NILC.

To formulate the optimal control problem, the lifted expressions for the op-
timal feedforward update in equation (3.9) and the objective function in equa-
tion (3.10) are expressed in terms of the time-samples of the various signals
as

ǔk+1
i = arg min

u
k+1

i

J (n)k+1
, (3.15)

J (n)k+1
,

Ni−1
∑

i=1

(

êk+1
i+1

TVi+1ê
k+1
i+1 + uk+1

i
TWiu

k+1
i

)

. (3.16)

The first time sample of the error estimate (êk+1
1 ) is removed from the objective

function since it cannot be changed by any feedforward update. Similarly, the
last time sample of the feedforward update (uk+1

Ni
) is removed from the objective

function, because it does not change the error in the considered time-interval
and thus its optimal value is zero. The error estimate is obtained from the state-
space equations associated with the lifted expression (3.7). These state-space
equations are

x̂k+1
i+1 = Âix̂

k+1
i + B̂iu

k+1
i , (3.17a)

x̂k+1
1 = O, (3.17b)

êk+1
i = Ĉix̂

k+1
i + ek

i , (3.17c)

where {Âi, B̂i, Ĉi} and x̂k+1
i are the state-space matrices and the state-vector

associated with the system estimate Ĝ.
Equations (3.15), (3.16) and (3.17) define a finite-horizon optimal control

problem. Başar and Olsder (1995) describe an algorithm to compute the optimal
feedforward update for a finite-horizon optimal control problem with a quadratic
objective function that only depends the system’s input and state vector. Such
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optimal-control problem is obtained by extending the state-vector with the error
and expressing the objective function in terms of the state and the input of the
extended state equation, yielding

x̃i+1 = Ãix̃i + B̃iũi + ṽi, (3.18a)

ˇ̃ui = arg min
ũi

˜J (n), (3.18b)

˜J (n) =

Ni−1
∑

i=1

(

x̃i+1
T Q̃i+1x̃i+1 + ũi

T R̃iũi

)

, (3.18c)

where

x̃i =

[

x̂k+1
i

ek
i

]

, (3.19a)

x̃1 =

[

O
ek
1

]

, (3.19b)

ũi = uk+1
i , (3.19c)

ṽi =

[

O
ek
i+1

]

, (3.19d)

Ãi =

[

Âi O
O O

]

, (3.19e)

B̃i =

[

B̂i

O

]

, (3.19f)

C̃
(e)
i =

[

Ĉi I
]

, (3.19g)

Q̃i = C̃
(e)
i

TViC̃
(e)
i , (3.19h)

R̃i = Wi. (3.19i)

Equations (3.18) define the affine quadratic discrete-time optimal control prob-
lem as analysed by Başar and Olsder (1995). The procedure to compute the so-
lution to the optimal control problem, yielding the optimal value of ˇ̃ui = uk+1

i ,
is given at the end of appendix B.1. The procedure consists of the solution
of a non-stationary Riccati difference equation, the solution of an anti-causal
state-convolution and a causal state-convolution. The number of computational
operations of the procedure scales linearly with the length of the iteration. The
second step of the procedure checks if the optimal value of the input indeed min-
imises the objective function. This condition is equivalent to condition (3.12) for
the lifted solution. The condition is satisfied if matrices R̃i and Q̃i are positive
definite, which is equivalent to the requirement that matrices Vi and Wi should
be positive definite.

The number of computational operations to compute the optimal feedfor-
ward update using the algorithm described in this section, which is based on
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the optimal-control solution from appendix B.1, depends on the state-dimension
and scales linearly with the number of time steps Ni. The number of compu-
tational operations to compute the optimal feedforward update using the algo-
rithm from subsection 3.3.1 does not depend on the state-dimension but scales
at least quadratically with Ni as it involves the computation of the inverse of
a lifted matrix. The procedure described in this section is thus more efficient
than the algorithm from subsection 3.3.1 for systems with a low state dimension
and a large number of time steps. Moreover, the algorithm is suited for LTV
systems and uses no measurements of the error from previous iterations. The
algorithm thus meets the requirements following from the objective of this thesis
(see section 1.2) and therefore it is used to compute the optimal feedforward
update for the experiments of which the results are described in chapter 6.

3.4 Convergence Analysis

In this section the convergence properties of the proposed NILC algorithm are
analysed. In particular, the effect of the weighting matrices on the convergence
properties is investigated. A similar analysis can be found in most literature
on NILC. Still, the convergence analysis is included in this work for two rea-
sons. Firstly, the convergence analysis serves as a basis for the formulation of
guidelines for tuning the weighting matrices of NILC. Secondly, the analysis is
used for comparison of the convergence properties of NILC with the convergence
properties of RILC, which are analysed in section 4.4.

In subsection 3.4.1 the selection of the weighting matrices is discussed.
Thereafter, in subsection 3.4.2, the conditions for convergence of the feedfor-
ward and the error are derived. Moreover, an expression for the final error is
given. In subsection 3.4.3 the convergence analysis is elaborated for systems
with a particular type of model error for which the convergence of components
of the feedforward and the error can be decoupled. In subsection 3.4.4 the
results from the convergence analysis are used to formulate guidelines for the
selection of the weighting matrices and the robustness filter.

3.4.1 Preliminaries

The convergence analysis is simplified by assuming that the weighting matrices
are selected as

V = I, W = w2I, (3.20)

where w is a non-zero real number that determines the relative weight on the
feedforward update. Substitution of these weighting matrices in the learning
matrix in equation (3.14) gives

L =
(

Ĝ
T
Ĝ + w2I

)−1

Ĝ
T
. (3.21)
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In subsection 3.4.2 the convergence of ek and fk will be analysed for system
equation (3.3), update equations (3.5) and (3.13) with the learning matrix from
equation (3.21).

Hereafter it is shown that the choice of the weighting matrices does not limit
the generality of the convergence analysis in subsection 3.4.2. A similar conver-
gence analysis can be used to prove convergence of a transformed feedforward
and error vector for any other set of symmetric positive weighting matrices.
The transformation is based on the Cholesky decomposition of the weighting
matrices, yielding

V = Ṽ Ṽ
T
, W = w2W̃W̃

T
, (3.22)

where w is some non-zero real number. Using this decomposition the following
transformations are introduced

ẽk = Ṽ
T
ek, d̃ = Ṽ

T
d, ũk = W̃

T
uk, f̃

k
= W̃

T
fk, (3.23)

The system equation (3.3), the feedforward update equation (3.5) and the up-
date equation (3.13) are formulated in terms of these transformed vectors as

ẽk+1 = G̃f̃
k+1

+ d̃, (3.24)

f̃
k+1

= f̃
k

+ ũk+1 (3.25)

ũk+1 = −L̃ẽk, (3.26)

where

G̃ = ˆ̃
G + Θ̃, (3.27)

ˆ̃
G = Ṽ

T
ĜW̃

−T
, (3.28)

Θ̃ = Ṽ
T
ΘW̃

−T
, (3.29)

L̃ =

(

˜̂
G

T ˜̂
G + w2I

)−1
˜̂
G

T

. (3.30)

Note that these equations are similar to equations (3.3), (3.5), (3.13) and (3.21)
that are used for the analysis of the convergence of ek and fk in subsection 3.4.2.
The analysis from subsection 3.4.2 can thus be used to prove convergence of ẽk

and f̃
k

using the transformed set of equations. The norm of ẽk and f̃
k

is related
to ek and fk as

∥

∥

∥
ẽk

∥

∥

∥

2

2
= ẽkT ẽk = ekT Ṽ Ṽ

T
ek = ekT V ek, (3.31)

w2
∥

∥

∥
f̃

k
∥

∥

∥

2

2
= w2f̃

kT f̃
k

= w2fkT W̃W̃
T
fk = fkT Wfk. (3.32)

Thus if monotonic convergence of the transformed vectors ẽk and f̃
k

is proved
for the transformed set of system equations using the convergence analysis from
subsection 3.4.2, then this implies monotonic convergence of the weighted norm
of the error and the feedforward update respectively.
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3.4.2 Convergence analysis

Convergence of the feedforward

The relation between the feedforwards in iterations k and k + 1 is obtained
by substitution of the optimal feedforward update equation (3.13) and system
equation (3.3) in update equation (3.5):

fk+1 = fk −Lek = fk −L
(

Gfk + d
)

= (I −LG)fk −Ld. (3.33)

From this equation and the definition of the spectral norm it follows that the
difference between feedforward and its final value converges monotonically to
zero if the following condition is satisfied

‖I −LG‖i2 < 1. (3.34)

Note that this condition can only be satisfied if LG is non-singular. Using the
expression for the learning matrix in equation (3.21) and the definition of the
model error matrix in equation (3.8), this inequality can be written as

∥

∥

∥

∥

(

w2I + Ĝ
T
Ĝ

)−1 (

w2I − Ĝ
T
Θ

)

∥

∥

∥

∥

i2

< 1. (3.35)

In subsection 3.4.3 it is shown that this condition is satisfied if the system is
modelled perfectly, i.e., Θ = O. Otherwise, this inequality gives a bound on the
model error for which the feedforward converges monotonically.

Convergence condition (3.35) is not satisfied if the model error is too large.
In that case the feedforward does not converge monotonically if update equa-
tion (3.5) is applied. A common method to overcome this problem is the ap-
plication of a so-called robustness filter (see subsection 2.1.4). A robustness
filter removes the components of the feedforward to which the response of the
system is not known. With a robustness filter, the feedforward update equation
becomes

fk+1 = Q
(

fk + uk+1
)

, (3.36)

where Q is the lifted representation of the robustness filter. The effect of the
robustness filter on the convergence of the feedforward can be analysed by in-
serting system equation (3.3) and the feedforward update equation (3.13) in
update equation (3.36), yielding

fk+1 = Q (I −LG)fk −QLd. (3.37)

From this equation follows that the feedforward converges monotonically if the
following condition is satisfied

‖Q (I −LG)‖i2 < 1. (3.38)
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Using the expression for the learning matrix in equation (3.14) and the definition
of the model error matrix in equation (3.8), this inequality can be written as

∥

∥

∥

∥

Q
(

Ĝ
T
Ĝ + w2I

)−1 (

w2I − Ĝ
T
Θ

)

∥

∥

∥

∥

i2

< 1. (3.39)

This condition can be satisfied by an appropriate selection of the robustness
filter Q. The convergence condition is satisfied for any Θ by taking Q = O, but
in this trivial case the feedforward is not updated (see equation (3.36)).

Convergence of the error

Firstly, the convergence of the error is analysed for the case no robustness filter is
applied, then the effect of a robustness filter on the convergence of the error is in-
vestigated. The relation between the errors in iterations k and k + 1 is obtained
by combining system equation (3.3), the feedforward update equation (3.5) (no
robustness filter) and the optimal feedforward update equation (3.13) as

ek+1 = ek + G
(

fk+1 − fk
)

= ek + Guk+1 = (I −GL) ek (3.40)

The fraction between the 2-norm of the error in iteration k + 1 and k is thus
‖I −GL‖i2 at maximum, giving an upper bound for the convergence ratio. The
error ek converges monotonically to zero if

‖I −GL‖i2 < 1. (3.41)

Note that this condition can only be satisfied if GL is non-singular. The con-
ditions for monotonic convergence of the feedforward (equation (3.34)) and the
error (equation (3.41)) can thus only be satisfied both if G is nonsingular. Us-
ing the definition of the model error matrix in equation (3.8) the convergence
condition can be written as

∥

∥

∥
I − ĜL−ΘL

∥

∥

∥

i2
< 1. (3.42)

This inequality gives a bound on the modelling error for which monotonic con-
vergence of the error is guaranteed. If the model error is too large, then conver-
gence condition (3.42) is not satisfied and the error does not converge monoton-
ically. As mentioned previously, monotonic convergence of the feedforward can
be realised for any model error by the application of a robustness filter, which
should be chosen such that condition (3.39) is satisfied. Monotonic convergence
of the feedforward implies convergence of the error, though monotonic conver-
gence of the error is not necessarily guaranteed. Nonetheless, an expression for
the final error can be derived. From equation (3.37) the following expression for
the feedforward after convergence is derived,

lim
k→∞

fk = (Q− I −QLG)
−1

QLd. (3.43)
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Substitution of this final feedforward in system equation (3.3) yields the follow-
ing expression for the final error

lim
k→∞

ek =
(

I + G (Q− I −QLG)
−1

QL
)

d. (3.44)

This final error can be non-zero. Trivially, Q = O results in ek = d, i.e., the
error is not reduced if no learning is applied. Previously it was shown that if
the error converges and Q = I, then the error converges to zero. Summarising,
it can be stated that a robustness filter can be used to increase the robustness
to model errors, but it may also result in a non-zero final error.

3.4.3 Decoupled convergence analysis

In this subsection the convergence analysis for NILC is elaborated for square
systems with a special type of model error. The only model error is assumed
to be the size of the singular values of the estimated lifted system matrix. The
convergence of components of the error and the feedforward can be decoupled
for this case and the error and the feedforward converge if each of their com-
ponents converge, which facilitates the convergence analysis. The results from
the decoupled analysis are valid if the system is square and modelled perfectly,
i.e., if Θ = O. Moreover, the decoupled analysis is illustrative for the effect of
other types of uncertainty like errors in the modelled frequency response of an
LTI system, because a close relation exists between the singular values of the
lifted system matrix of an LTI system and the frequency response of that system
(Dijkstra, 2004).

Preliminaries

The decoupled convergence analysis is based on the singular value decomposition
of the estimated lifted system matrix, which is denoted as

Ĝ = UST T , (3.45)

where S is a diagonal matrix containing the singular values si on its diagonal
and U and T are orthogonal matrices containing the singular vectors in their
columns. Dijkstra (2004) has shown that the singular value decomposition of
the lifted matrix of an LTI system for an infinitely long iterations results in
singular vectors containing frequency components for which the gain of the
system’s frequency response is identical and the singular values are equal to the
corresponding gain.

Based on the singular value decomposition the following transformations are
introduced

ēk = UT ek, d̄ = UT d, ūk = T T uk, f̄
k

= T T fk, (3.46)
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The system equation (3.3), the feedforward update equation (3.5) and the up-
date equation (3.13) can be reformulated in terms of these transformed vectors
as

ēk+1 = Ḡf̄
k+1

+ d̄, (3.47)

f̄
k+1

= f̄
k

+ ūk+1 (3.48)

ūk+1 = −L̄ēk, (3.49)

where, using the weighting matrices from equation (3.20),

Ḡ = S + Θ̄, (3.50)

Θ̄ = UT ΘT , (3.51)

L̄ = T T LU =
(

ST S + w2I
)−1

ST . (3.52)

In the rest of this subsection, it is assumed that Ĝ is square and Θ̄ is a
diagonal matrix. A square Ĝ means that the number of inputs and outputs is
equal. A diagonal Θ̄ implies that the only model error is the size of the singular
values. The response of the model and the real system to a column of T is
proportional to the corresponding column of U . The gain of the model is si and
the gain of the real system is si + θi, where θi are the diagonal components of
Θ̄. Note that Θ̄ = O gives θi = 0 and thus the following convergence analysis
is valid if there is no model error.

The convergence of the components of the transformed vectors of the error
ēk and the feedforward update ūk can be decoupled if Ĝ is square and Θ̄ is
a diagonal matrix. Recalling that the diagonal components of S and Θ̄ are
denoted as si and θi respectively, the system equation (3.3), the feedforward
update equation (3.48) and the update equation (3.49) can be decoupled as

ēk+1
i = (si + θi) f̄

k+1
i + d̄i, (3.53)

f̄k+1
i = f̄k

i + ūk+1
i (3.54)

ūk+1
i = −liēk

i , (3.55)

where the subscript i denotes the ith component of the lifted vector and

li =
si

w2 + s2i
. (3.56)

Hereafter, the convergence of ēk+1
i and f̄k+1

i is analysed. The norm of ek and
fk can be expressed in terms of ēk+1

i and f̄k+1
i as

∑

i

(

ēk+1
i

)2
=

∥

∥ēk
∥

∥

2

2
= ekT UUT ek = ekT ek =

∥

∥ek
∥

∥

2

2
, (3.57)

∑

i

(

f̄k+1
i

)2
=

∥

∥ūk
∥

∥

2

2
= ukT TT T uk = ukT uk =

∥

∥uk
∥

∥

2

2
. (3.58)
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Thus if convergence of ēk+1
i and f̄k+1

i is proved for all i then this implies mono-
tonic convergence of the weighted norm of the error and feedforward update
respectively.

Convergence of the feedforward

The relation between the components of the transformed feedforwards in it-
eration k and k + 1 is obtained by substitution of the optimal feedforward
update equation (3.55), system equation (3.53) and the learning matrix from
equation (3.56) in update equation (3.54), yielding

f̄k+1
i = f̄k

i − liēk
i = f̄k

i − li
(

(si + θi) f̄
k
i + d̄i

)

=
w2 − siθi

w2 + s2i
f̄k

i − lid̄i. (3.59)

The component f̄k
i thus converges if

∣

∣

∣

∣

w2 − siθi

w2 + s2i

∣

∣

∣

∣

< 1. (3.60)

This convergence condition gives a bound on the allowable model error in the
singular value. Figure 3.1 shows the convergence ratio of the feedforward as

θi/si

(

w
2
−
s i
θ i

)

/
(

w
2

+
s2 i

)

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

si/w = 0.5, si/w = 1.0, si/w = 2.0,
the feedforward component diverges in the shaded areas

Figure 3.1: The convergence ratio of the feedforward component f̄k
i as a function

of the relative error in the singular value (θi/si) for NILC without a robustness
filter
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a function of relative error in the modelled singular value (θi/si). The con-
vergence condition is satisfied for any real w if |θi/si| < 1. As a special case,
the convergence condition is satisfied if θi = 0 and si 6= 0. This means that
the feedforward converges if the controlled system is non-singular and modelled
perfectly. The convergence condition is satisfied for |θi/si| > 1 only if θi/si is
positive and si/w is sufficiently small. The weight w can thus be used to in-
crease the allowable model error. The convergence condition is not satisfied for
any real w if θi/si < −1, i.e., the signs of the singular values of the real system
and the model are different. In that case a robustness filter could be applied
to realise monotonic convergence of the feedforward. The convergence of the
components of the feedforward can still be decoupled if the robustness filter is
chosen as

Q = T T Q̄T , (3.61)

where Q̄ is a diagonal matrix with the components qi on its diagonal. The
relation between the components of the transformed feedforwards in iteration
k and k + 1 is obtained by combining the expression for the robustness filter,
update equation (3.36), the transformations from equations (3.46), the feed-
forward update equation (3.55) and the learning matrix from equation (3.56),
yielding

f̄k+1
i = qi

(

f̄k+1
i + ūk+1

i

)

= qi
(

f̄k+1
i − liēk

i

)

=

qi
(

f̄k+1
i − li

(

(si + θi) f̄
k+1
i + d̄i

))

= qi
w2 − siθi

w2 + s2i
f̄k

i − qi
si

w2 + s2i
d̄i. (3.62)

The components f̄k
i thus converge if

∣

∣

∣

∣

qi
w2 − siθi

w2 + s2i

∣

∣

∣

∣

< 1 (3.63)

This condition can be satisfied for any θi by choosing a sufficiently small value
for qi. Figure 3.2 shows the left hand side of the condition for different values of
qi. Clearly, a small qi results in a large range of θi/si for which the feedforward
converges. Thus convergence of the feedforward component corresponding to
a large model error can be realised by taking the corresponding gain of the
robustness filter small.

Convergence of the error

Firstly, the convergence of the error is analysed for the case no robustness filter
is applied, then the effect of a robustness filter on the convergence of the error is
investigated. Combining system equation (3.53), the feedforward update equa-
tion (3.54), the optimal feedforward update equation (3.55) and the learning
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Figure 3.2: The convergence ratio of the feedforward component f̄k
i as a function

of the relative error in the singular value (θi/si) for NILC with a robustness filter

matrix from equation (3.56) gives

ēk+1
i = ēk

i + (si + θi)
(

f̄k+1
i − f̄k

i

)

= ēk
i + (si + θi) ū

k+1
i

= ēk
i − (si + θi) liē

k
i =

(

1− (si + θi)
si

w2 + s2i

)

ēk
i =

w2 − siθi

w2 + s2i
ēk
i (3.64)

The convergence ratio of the error component ēk
i is thus

(

w2 − siθi

)

/
(

w2 + s2i
)

.
and the error component converges to zero if

∣

∣

∣

∣

w2 − siθi

w2 + s2i

∣

∣

∣

∣

< 1. (3.65)

Note that this condition for the convergence of the error component ēk
i is equal

to the condition for the convergence of the feedforward component f̄k
i in equa-

tion (3.60). Again the condition is satisfied for any real w if |θi/si| < 1, with
θi = 0 as a special case. This means that if the system is non-singular and
modelled perfectly, then the error converges to zero. Figure 3.3 shows the con-
vergence ratio of the error component ēk

i as a function of si/w for θi = 0. The
larger the value of si/w, the smaller the convergence ratio. The error converges
even to zero in one trial if w = 0. The error is not reduced if si = 0, which
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Figure 3.3: The convergence ratio of the error component ēk
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the fraction of the singular value and input-weight (si/w) for NILC without a
model error (θi = 0)

implies that the error components corresponding to the system’s zeroes cannot
be compensated. The convergence ratio of the error for θi 6= 0 is depicted in
figure 3.1. Clearly, the error converges if |θi/si| < 1 and a larger model error is
only allowable if θi/si is positive.

The convergence condition cannot be satisfied for any real w if θi/si < −1,
i.e., the signs of the singular values of the real system and the model are dif-
ferent. As mentioned previously, monotonic convergence of the feedforward can
be realised for any model error by the application of a robustness filter. The
feedforward converges if convergence condition (3.63) is satisfied for all i. From
equation (3.62) the following expression for the feedforward after convergence
is derived:

lim
k→∞

f̄k+1
i = − qisi

w2 + s2i − qi (w2 − siθi)
d̄i. (3.66)

Substitution of this equation in system equation (3.53) gives the following ex-
pression for the final error

lim
k→∞

ēk
i =

w2 + s2i − qi
(

w2 + s2i
)

w2 + s2i − qi (w2 − siθi)
d̄i (3.67)

This expression shows that if the error component ēk
i converges, then it indeed

converges to zero if qi = 1. Figure 3.4 shows the final error component for several
other values of qi. The final error component is only plotted for the range of
θi/si where the convergence condition (3.63) is satisfied. The figure shows that
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singular value (θi/si) for NILC with a robustness filter

for a small value of qi a large final error remains. Trivially, qi = 0 results in
ēk
i = d̄i, i.e., the error component is not reduced if no learning is applied. For

any value of qi, the final error component ē∞i is larger than d̄i if θi/si < −1,
i.e., the error component increases when the signs of the singular values of the
system and the model differ.

3.4.4 Parameter selection

In the preceding subsections the convergence properties of NILC are analysed.
In particular, the effects of the weight w and the robustness filter on the con-
vergence of the feedforward and the final error are analysed. In this subsection
several guidelines for the selection of these parameters are formulated based on
the results of the convergence analysis. The guidelines are partly based on the
analysis subsection 3.4.3, in which it is assumed that the system is square and
the only model error is the size of the singular values of the system matrix.

Selection of the weight

The learning matrix, expressed by equation (3.14), depends on the selection of
the weight w. The convergence ratio of the error, expressed by equation (3.40),
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depends on this learning matrix and thus on the selection of w. In subsec-
tion 3.4.3 it is shown that a small value of w increases the convergence rate
(figure 3.3).

The conditions for the convergence of the feedforward depend on the selected
weight according to equations (3.35) and (3.39). Thus, the allowable model error
is also affected by the selection of w. In subsection 3.4.3 it is shown by figures 3.1
and 3.2 that a large value of w increases the allowable model error.

The selection of w can thus be used to increase the convergence rate or the
allowable model error. From subsection 3.4.3 it is concluded that the value of
w value should be taken small to increase the convergence rate, but its value
should be taken large to increase the allowable model error.

Selection of the robustness filter

Preferably, no robustness filter should be used, because then the error converges
to zero according to equation (3.40) if convergence condition (3.42) is satisfied.
In subsection 3.4.3 it is shown that this convergence condition is satisfied if the
system is square, nonsingular and modelled perfectly. However, the convergence
condition cannot be satisfied for a large model error if no robustness filter is
applied. In subsection 3.4.3 it is shown that the condition for convergence of
the error cannot be satisfied without a robustness filter if the signs of the singular
values of the real system and its estimate differ (equation (3.65)).

The condition for convergence of the feedforward, which is expressed by
equation (3.39), can be satisfied for a large model error by application of a (non-
unity) robustness filter, though the application of such robustness filter may
result in a non-zero final error according to equation (3.44). The convergence
condition is even satisfied for any model error if the robustness filter is set to zero,
though in this case thee feedforward is not updated and the error is not reduced
at all. In subsection 3.4.3 it is shown that the allowable error in the singular
value can be increased by taking the corresponding gain of the robustness filter
smaller than unity (equation (3.63)), but this also implies that the final value
of the corresponding error component is not completely compensated according
to equation (3.67).

NILC thus results in zero final error if no robustness filter is used. However,
a robustness filter can be needed to increase the robustness to modelling errors,
although this could result in a nonzero final error. The robustness filter should
thus be zero for the components of the error corresponding to a large model
uncertainty to obtain convergence, but close to unity for the other components
of the error to reduce these error components to zero. In practice, the high-
frequency dynamics of a mechanical system are often not modelled accurately.
The robustness filter should then be a low-pass filter which is unity at low-
frequencies and close to zero at high frequencies. This behaviour can be realised
by implementing the robustness filter as a high-order zero-phase low-pass filter.
The high-order results in a small frequency band in which the low-pass filter



44 Chapter 3. Norm-optimal ILC

rolls off from unity to zero. This behaviour cannot be realised by a stable
and causal low-pass filter as the roll-off introduces phase-lag at low-frequencies,
which makes the filter unequal to unity at those frequencies.

Discussion

In the previous analysis it is concluded that the final error depends on the
selection of the robustness filter and the convergence rate depends on the selec-
tion of the weight on the feedforward update. The selection of the weight on
the feedforward update and the robustness filter both determine the allowable
model error. The best selection of these parameters for a certain application
thus depends on the expected model error, the desired convergence rate and
the allowable final error. The choice of these filters for the experiments on the
Stäubli RX90 robot is discussed in subsection 6.2.1.

A limitation of the proposed NILC algorithm is that the convergence ratio
can only be tuned indirectly by the selection of the weights, because the ac-
tual convergence rate also depends on the system dynamics. Furthermore, the
tuning of the weights and the robustness filter determine the allowable model
error, but the actual convergence is verified from convergence conditions like
inequality (3.34) that contain the model error, which is mostly unknown. The
next chapter describes the design of an RILC algorithm that overcomes the
aforementioned disadvantages of NILC. A maximum convergence ratio can be
specified explicitly and the learning filter is optimised to realise this convergence
ratio for the worst case effect of the specified model uncertainty. Moreover, the
actual realisation of convergence with the desired convergence ratio is verified
for a specification of the model uncertainty instead of the model error.



Chapter 4

Robust ILC

Robust ILC (RILC) is a model-type ILC method to reduce the tracking error
of a system with a specified bounded model uncertainty. The ILC algorithm
is designed such that the reduction of the error is optimised for the worst-case
effect of the model uncertainty.

Section 4.1 describes the linear time-varying system dynamics and the model
uncertainty considered in this chapter. The RILC design objective, which spec-
ifies the optimal learning filter, is formulated in section 4.2. Algorithms for the
computation of the optimal learning filter and for checking robust convergence
of the error are described in section 4.3. A computationally efficient algorithm
of RILC for LTV systems is presented in subsection 4.3.2. In section 4.4 the
convergence properties of the proposed RILC algorithm are analysed and used
to formulate guidelines for the selection of the parameters of RILC.

The formulated design objective for RILC has been proposed in a similar
form by Van de Wijdeven and Bosgra (2007a,b). The contributions of this
chapter are the proposed computationally efficient RILC algorithm for LTV
systems, the integration of a (non-causal) robustness filter in the design of RILC
and the developed algorithms for checking convergence of RILC for LTV systems
and finite time iterations.

4.1 System description

The dynamics of the controlled system are assumed to be linear, time-varying,
iteration-invariant and strictly proper. The effect of the feedforward fk

i on
the error ek

i can thus be modelled by the state-space equations (3.1) or the
corresponding lifted equation (3.3).

It is assumed that the real system dynamics G are not exactly known, though
an estimate of the system dynamics and a specification of its uncertainty are
available. The estimate of the system dynamics is denoted as Ĝ. The uncer-
tainty in the estimate of the system dynamics is specified as additive uncertainty
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by the following system equation

ek =
(

Ĝ + N∆M
)

fk + d, (4.1)

where the term N∆M represents the additive uncertainty. The lifted matrices
M and N represent weighting filters that are selected such that the normalised
uncertainty matrix ∆ is bounded as ‖∆‖i2 < 1, i.e., the spectral norm of the
normalised uncertainty matrix is less than 1. Note that all lifted matrices,
including M , N and ∆, are assumed to be real-valued in this thesis. The
weighting filters M and N are referred to as the uncertainty weighting filters,
where M is the pre-weighting filter and N is the post-weighting filter. The
selection of these uncertainty weighting filters is not unique as any combination
is appropriate as long as the additive uncertainty of the system dynamics is
specified as G = Ĝ + N∆M for some ‖∆‖i2 < 1. This is illustrated by the
following example. Suppose that filters M and N appropriately specify the
uncertainty and consider the following modified set of uncertainty weighting
filters

Ñ = βN , (4.2a)

M̃ = 1
β
M , (4.2b)

where the weight ratio β is a real scalar. This modified set of weighting matrices
specifies the same uncertainty for any value of the weight ratio. The weight ratio
thus modifies the size of the uncertainty weighting filters without affecting the
overall size of the specified uncertainty. The selection of the weight ratio is
discussed in more detail in subsection 4.4.3.

According to the internal model principle (see section 3.1), an ILC algorithm
should contain an integrator over the iterations to compensate for the trial
invariant disturbance d. For the design of RILC, the integrator is implemented
by summing the error ek over the iterations as

zk+1 = zk + ek, (4.3)

and relating the feedforward fk to the summed error zk as

fk = −Lzk, (4.4)

where L represents the learning filter. Note that the sequence of the integrator
and the learning filter for RILC is the reverse of the sequence for NILC, which
is expressed by equations (3.5) and (3.13). The reversed sequence facilitates the
design of RILC in the subsequent sections.

4.2 Objective

The goal of RILC is realising robust convergence of the error, i.e., convergence
of the error for all systems that comply with the specified bounded model uncer-
tainty. In this work robust convergence of the error ek is realised by designing
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the learning filter L such that the summed error zk converges robustly and
monotonically. Monotonic convergence of the summed error implies that the
error converges to zero if update equation (4.3) is used. However, it is not pos-
sible to guarantee convergence of the summed error for large model uncertainty
for this update equation. This is the reason for including a robustness filter in
the design of RILC, which is discussed in more detail in subsection 4.2.1. The
convergence of the summed error for RILC with a robustness filter is analysed
in subsection 4.2.2. This convergence analysis is the basis for the formulation of
the design objective for the learning filter L of RILC in subsection 4.2.3. The
section is finished with some remarks on the proposed RILC design in subsec-
tion 4.2.4.

4.2.1 Robustness filter

As mentioned above, convergence of the error ek is realised by designing the
learning filter L such that the summed error zk converges robustly and mono-
tonically, which means that the error converges to zero if update equation (4.3)
is used. Moreover, it is shown by the convergence analysis in section 4.4 that if
update equation (4.3) is used then monotonic convergence of the summed error
implies monotonic convergence of the error. However, the convergence analysis
also shows that an RILC algorithm based on update equation (4.3) may not
result in robust convergence for a large model uncertainty. This conclusion is
similar to the conclusion in section 3.4 that NILC without a robustness filter
may not result in convergence for a large model error. Robust convergence for
a large model uncertainty can be realised by using a robustness filter. The
robustness filter is implemented by changing update equation (4.3) to

zk+1 = Rzk + ek, (4.5)

where R is the robustness filter. The dimension of the summed error zk is
equal to the dimension of the error ek and thus the dimensions of the robustness
filter R are equal to the dimension of the error. Note that the dimensions of
robustness filter R differ from the dimensions of the robustness filter Q for
NILC, which are equal to the dimension of the feedforward. Only for R = I the
variable zk corresponds to the sum of the error over the iterations. Nevertheless,
the variable zk is referred to as the summed error for any other choice of the
robustness filter hereafter. The effect of the choice of R on the final error and the
convergence properties of RILC is analysed in detail in section 4.4. Guidelines
for the selection of the robustness filter are also formulated in section 4.4. In
the following subsections the design of the learning matrix L is considered.

4.2.2 Convergence of the summed error

In this subsection the convergence of the summed error is analysed. This con-
vergence analysis forms the basis for the formulation of the design objective for
the learning matrix L in subsection 4.2.3.
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Figure 4.1: Block scheme of a system with additive uncertainty controlled by
RILC

The system equation (4.1), the update equation (4.5) and the feedforward
equation (4.4) form a closed-loop of which the block diagram is shown in fig-
ure 4.1. The relation between the summed error in iterations k and k + 1 is

zk+1 = Rzk −
(

Ĝ + N∆M
)

Lzk + d =
(

R− ĜL−N∆ML
)

zk + d. (4.6)

The summed error thus converges monotonically if
∥

∥

∥
R− ĜL−N∆ML

∥

∥

∥

i2
< 1. (4.7)

If this condition is satisfied, then the final value of the summed error z∞ satisfies
the following relation

z∞ =
(

R− ĜL−N∆ML
)

z∞ + d. (4.8)

Subtracting this equation from equation (4.6) yields

wk+1 =
(

R− ĜL−N∆ML
)

wk, (4.9)

where wk is defined as
wk = zk − z∞. (4.10)
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The variable wk represents the part of the summed error that is reduced to zero
over the iterations and therefore this variable is referred to as the compensable
summed error. Note that the conditions for convergence of the compensable
summed error wk and the summed error zk coincide.

Further on in this subsection a condition is formulated to satisfy inequal-
ity (4.7) for any ‖∆‖i2 < 1. The convergence condition is formulated using the
standard plant representation of the system in equation (4.9), where the dy-
namics of the learning matrix L, which should be designed, and the normalised
uncertainty matrix, which is unknown, are separated from the other dynamics.
The standard plant format was previously used for the design of robust ILC by,
e.g., Van Dijk et al. (2001); De Roover and Bosgra (2000); Van de Wijdeven
and Bosgra (2007a).

For the standard plant representation of the system in equation (4.9) some
additional variables are introduced that define the inputs and outputs of the
standard plant. The variable uk is introduced as the output of the learning
filter L for input wk, i.e.,

uk = −Lwk. (4.11)

Substitution of equation (4.10) and (4.4) in equation (4.11) yields

uk = −Lzk + Lz∞ = fk − f∞. (4.12)

Analogous to the term that is used for the variable wk, the variable uk is
referred to as the compensable input. Furthermore, the following variables are
introduced as the input and output of the normalised uncertainty matrix

pk = Muk, (4.13a)

qk = ∆pk. (4.13b)

Substitution of the definitions in equations (4.11) and (4.13b) in equation (4.9)
gives

wk+1 = Rwk + Ĝuk + Nqk. (4.14)

The standard plant describes the dynamic relation between the compensable
summed errors in iteration k and k + 1, the output and input of the learning
filter, which should be designed, and the output and input of the normalised
uncertainty matrix, which is unknown. Using equations (4.14) and (4.13a), the
standard plant, which is denoted by P , can be expressed as
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O O M

I O O
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qk
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 . (4.15)

A block-diagram of the dynamics of the system in equation (4.9) in the standard
plant format is depicted in figure 4.2, where the shaded block represents the
standard plant P . The combination of the standard plant P and the learning
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Figure 4.2: Standard plant format of a system with additive uncertainty con-
trolled by RILC

controller L, which is outlined by the dashed line and denoted by H, can be
expressed as

[

wk+1

pk

]

= H

[

wk

qk

]

=

[

R− ĜL N

−ML O

] [

wk

qk

]

. (4.16)

Hereafter, it is shown that the convergence of the compensable summed
error is related to the spectral norm of matrix H, which is denoted as γH . This
relation is used in subsection 4.2.3 for the formulation of the design objective
for L. By definition of the spectral norm, the following equality holds

γH = ‖H‖i2 = max
wk

max
qk

∥

∥

∥

[

wk+1T pkT
]T

∥

∥

∥

2
∥

∥

∥

[

wkT qkT
]T

∥

∥

∥

2

. (4.17)
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Squaring both sides of the equation gives

max
wk

max
qk

∥

∥wk+1
∥

∥

2

2
+

∥

∥pk
∥

∥

2

2

‖wk‖22 + ‖qk‖22
= γ2

H , (4.18)

and rewriting this results gives

max
wk

max
qk

(

∥

∥wk+1
∥

∥

2

2
+

∥

∥pk
∥

∥

2

2
− γ2

H

∥

∥wk
∥

∥

2

2
− γ2

H

∥

∥qk
∥

∥

2

2

)

= 0. (4.19)

Thus, for any value of wk and qk the following inequality holds

∥

∥wk+1
∥

∥

2

2
− γ2

H

∥

∥wk
∥

∥

2

2
+

∥

∥pk
∥

∥

2

2
− γ2

H

∥

∥qk
∥

∥

2

2
≤ 0. (4.20)

Moreover, equation (4.13b) and the assumption ‖∆‖i2 < 1 yield the following
inequality

∥

∥qk
∥

∥

2
<

∥

∥pk
∥

∥

2
. (4.21)

Combining inequalities (4.20) and (4.21) for 0 ≤ γH < 1 gives

∥

∥wk+1
∥

∥

2

2
< γ2

H

∥

∥wk
∥

∥

2

2
, (4.22)

Thus, γH < 1 is a sufficient condition for monotonic convergence of the com-
pensable summed error wk with a convergence ratio of at most γH for any
‖∆‖i2 < 1. Previously it was stated that the conditions for monotonic conver-
gence of the compensable summed error wk and the summed error zk coincide.
Thus, if the learning matrix L is designed such that γH < 1, then the summed
error converges monotonically with a convergence ratio of at most γH for any
‖∆‖i2 < 1.

4.2.3 The design objective

The convergence analysis from the previous subsection is used to formulate the
design objective for RILC that specifies the optimal learning filter. This design
objective is formulated using the objective function J (s)k

, which is defined as

J (s)k
,

∥

∥wk+1
∥

∥

2

2
+

∥

∥pk
∥

∥

2

2
− γ2

∥

∥wk
∥

∥

2

2
− γ2

∥

∥qk
∥

∥

2

2
, (4.23)

where γ is a real scalar satisfying 0 < γ < 1. This objective function is defined
such that if

max
wk

max
qk

J (s)k
< 0, (4.24)

then equality (4.19) holds for some γH < γ < 1 and thus wk converges to zero
with a convergence ratio of at most γ according to inequality (4.22). With
this in mind, the optimal learning filter is defined as the filter that relates the
compensable input uk to the compensable summed error wk (equation (4.11))
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such that objective function J (s)k
is minimised for the worst case effect of the

model uncertainty qk. This design objective is formulated in terms of the output
of the optimal learning filter as

ǔk = arg min
uk

max
qk

J (s)k
, (4.25)

where uk is a function of wk. Robust convergence with a convergence ratio of at
most γ is guaranteed if condition (4.24) is satisfied for the optimal compensable
input, i.e., if

max
wk

min
uk

max
qk

J (s)k
< 0, (4.26)

The value of γ thus specifies an upper bound for the convergence of the com-
pensable summed error and for this reason the variable is referred to as the
maximum convergence ratio hereafter.

The expression for the objective function in equation (4.23) contains the
dependent variables wk+1 and pk. These variables can be eliminated from the
objective function using the expression for the standard-plant in equation (4.15),
yielding

J (s)k
= wk+1T wk+1 + pkT pk − γ2wkT wk − γ2qkT qk =

(

Rwk + Ĝuk + Nqk
)T (

Rwk + Ĝuk + Nqk
)

+ ukT MT Muk − γ2wkT wk − γ2qkT qk. (4.27)

This expression for the objective function depends only on the unknown effect
of the uncertainty qk, the compensable input uk and the compensable summed
error wk. According to the convergence condition this objective should be
negative for the worst case effect of qk. This maximising qk is a function of the
variables uk and wk. According to the design objective in equation (4.25), the
optimal compensable input uk should minimise the objective function for the
worst case qk. This optimal uk is a function of the remaining variable wk as
expressed by equation (4.11). The expression of the objective function J (s)k

for
the maximising qk and the minimising uk is referred to as the optimal objective
function. This optimal objective function depends only on (quadratic terms of)
wk. If the optimal objective function is negative definite with respect to the
compensable summed error wk, then J (s)k

< 0 for any value of wk and thus
condition (4.26) is satisfied. Previously it was concluded that condition (4.26) is
a sufficient condition for realising robust convergence of the summed error with
a convergence ratio of at most γ. Therefore, the negative definiteness of the
optimal objective function with respect to the compensable summed error wk

is hereafter referred to as the sufficient condition for robust convergence, which
is abbreviated as SCRC.



4.3. Solutions of the optimal learning filter 53

4.2.4 Remarks

In the previous subsections it is shown that the summed error converges with
a convergence ratio of at most γ if the SCRC is satisfied for some γ < 1. The
minimally achievable maximum convergence ratio can be found by an iterative
search for the smallest γ for which the SCRC is satisfied for the given model
uncertainty and robustness filter. If R = I, then convergence of the summed
error implies convergence of the error to zero according to update equation (4.5).
However, it is possible that the SCRC cannot be satisfied for any γ < 1 if R = I,
which means that robust convergence of the error to zero cannot be guaranteed
for the specified model uncertainty. In section 4.4 it is shown that it is possible
to satisfy the SCRC for any value of γ and any size of the model uncertainty
using a non-unity robustness filter. However, it is also shown that this could
result in a non-zero final error.

The design objective for the optimal learning filter is defined such that the
learning filter relates the compensable input uk to the compensable summed
error wk optimally in the sense of equation (4.25). The same learning filter is
used for the implementation of RILC to compute the feedforward fk from the
measured summed error zk as in equation (4.4).

The next section describes two algorithms for the solution of the optimal
learning filter for the specified design objective, yielding two implementations
of RILC. Furthermore, in line with the derivation of the two algorithms for the
optimal learning filter, two algorithms are proposed to check the SCRC.

4.3 Solutions of the optimal learning filter

The optimal learning filter should relate the compensable input uk to the com-
pensable summed error wk optimally in the sense of equation (4.25) for the ob-
jective function in equation (4.23) and system equations (4.15). In this section
two algorithms for the computation of the optimal learning filter are derived,
yielding two algorithms for RILC. In line with the algorithms for the solution
of the learning filter, two algorithms for checking the SCRC are derived.

In subsection 4.3.1 it is shown that an explicit expression for the optimal
learning filter can be derived using the lifted system description. Besides, the
lifted system description is used to formulate the optimal objective function in
terms of the compensable summed error. This expression of the optimal ob-
jective function can be used to check the SCRC. The lifted expressions for the
optimal learning filter and the optimal objective function are used in section 4.4
for the analysis of the convergence properties of RILC. However, the computa-
tion of the learning filter and checking the SCRC using the lifted expressions
requires computations with lifted matrices, which makes the algorithms compu-
tationally demanding for long iterations.

A more efficient algorithm for the computation of the optimal learning filter
for RILC can be derived using the state-space representation of the system and
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dynamic game theory, which has been demonstrated before by Van de Wijdeven
and Bosgra (2007a). However, their algorithm is only suited for LTI systems
and does not include a robustness filter, while the application considered in this
work requires an algorithm that is suited for LTV system with considerable
model uncertainty. In subsection 4.3.2 dynamic game theory is used to derive
an algorithm for the computation of the optimal learning filter for LTV systems
with a (non-causal) robustness filter. Van de Wijdeven and Bosgra (2007a) use
frequency domain analysis for checking the SCRC, which limits the applicabil-
ity of the convergence analysis to LTI systems and does not account for the
finite length of the iteration. In subsection 4.3.2 an algorithm is proposed to
check the SCRC from the state-space representation of the system and optimal
control theory. This convergence analysis is suited for LTV systems and ex-
plicitly accounts for the finite length of the iteration. The algorithms proposed
in subsection 4.3.2 are computationally efficient, suited for LTV systems and
use no current iteration data. These properties meet requirements on the ILC
algorithm imposed by the objectives of this work (see section 1.2). The other
requirements on the ILC algorithm following from the objective of this work
concern the convergence of the error. The convergence properties of RILC are
analysed in section 4.4. The suitability of the proposed RILC algorithm for the
objectives of this work is evaluated experimentally by the application to the
Stäubli RX90 robot. The experimental results are described in chapter 6.

Summarising, subsection 4.3.1 describes the derivation of the optimal feed-
forward update from the lifted equations, which yields an explicit lifted expres-
sion for the optimal learning filter, and subsection 3.3.2 describes the derivation
of the optimal feedforward update using dynamic game theory, yielding an effi-
cient algorithm for the optimal learning filter.

4.3.1 Solution using the lifted description

In this section the optimal feedforward update is solved using the lifted system
description. The lifted expression for the objective function in equation (4.27)
depends only on qk and uk, which should maximise and minimise the objec-
tive function respectively (equation (4.25)), and wk, which is the input to the
learning filter. The optimisation problem from section 4.2 is such that the com-
pensable input uk is selected first and subsequently qk reacts to the selected
uk, because qk represents the output of the model uncertainty for the selected
compensable input uk. In other words, the maximising input qk is a function
of the minimising input uk. Below, the optimal input uk is derived taking into
account that the maximising disturbance qk can be a function of uk. The re-
sulting optimal inputs are the so-called Stackelberg solution (Başar and Olsder,
1995) of the optimisation problem. After the derivation of this solution, the
optimal input uk is derived without taking into account that qk is a function of
uk. In that case the resulting solutions of qk and uk both optimise the objec-
tive function for the worst case effect of the other variable such that a deviation
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of either of the inputs from their optimum yields a smaller or a larger objec-
tive function respectively. These optimal inputs are the so-called Nash solution
(Başar and Olsder, 1995) of the optimisation problem. Both solutions are com-
pared after their derivation and the conclusions from this comparison are used
in subsection 4.3.2 for formulating a more efficient algorithm to compute the
optimal input uk.

Derivation of the Stackelberg solution

Hereafter, the optimal qk and uk are derived taking into account that qk can
be a function of uk. The objective function in equation (4.27) has a maximum
with respect to qk if its second order derivatives with respect qk is negative
definite, i.e.,

2NT N − 2γ2I < 0. (4.28)

This inequality poses a constraint on the selection of the uncertainty post-
weighting filter and N . The condition is satisfied if the spectral norm of the
post-weighting filter N is taken sufficiently small. The spectral norm of the
post-weighting filter can be reduced by modification of the uncertainty weight-
ing filters as in equation (4.2) with a sufficiently small value for the weight ratio
β.

If condition (4.28) is satisfied, then the maximising qk is obtained by equat-
ing the derivative of the objective function J (s)k

(equation (4.27)) with respect
to this variable to zero, resulting in

2NT
(

Rwk + Ĝuk + Nqk
)

− 2γ2qk = O. (4.29)

Solving qk from this equation yields

qk =
(

γ2I −NT N
)−1

NT
(

Rwk + Ĝuk
)

. (4.30)

Substitution of this maximising qk in the objective function J (s)k
(equa-

tion (4.27)) and rewriting the result using the Woodbury-formula (Golub and
Van Loan, 1996) yields

J (s)k
= ukT MT Muk − γ2wkT wk

+
(

Rwk + Ĝuk
)T

γ2
(

γ2I −NNT
)−1 (

Rwk + Ĝuk
)

. (4.31)

This objective function is subsequently minimised by uk. The objective has a
minimum with respect to uk if its second order derivatives with respect uk is
negative definite respectively, i.e.,

2MT M + 2Ĝ
T
γ2

(

γ2I −NNT
)−1

Ĝ > 0. (4.32)
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This condition is satisfied if the system matrix Ĝ is nonsingular and condi-
tion (4.28) is satisfied. Otherwise the selection of a non-singular pre-weighting
filter M is sufficient to satisfy the inequality.

If condition (4.32) is satisfied, then the minimising uk is obtained by equating
the derivative of the objective function J (s)k

from equation (4.31) with respect
to this variable to zero, yielding

2Ĝ
T
γ2

(

γ2I −NNT
)−1 (

Rwk + Ĝuk
)

+ 2MT Muk = O, (4.33)

Solving uk from equation (4.33) gives the following explicit expression for the
optimal compensable input

uk = −Lwk, (4.34)

where the optimal learning filter is of the form

L =

(

Ĝ
T
γ2

(

γ2I −NNT
)−1

Ĝ + MT M

)−1

Ĝ
T
γ2

(

γ2I −NNT
)−1

R.

(4.35)
Defining the following matrices

V ′ = γ2
(

γ2I −NNT
)−1

, (4.36a)

W ′ = MT M , (4.36b)

the optimal learning filter can be rewritten as

L =
(

Ĝ
T
V ′Ĝ + W ′

)−1

Ĝ
T
V ′R. (4.37)

Note that this expression for the learning filter is similar to the expression for
the learning filter of NILC in equation (3.14) if R = I. The matrices V and W

in the learning filter for NILC are the user-defined static weights on the error
and feedforward update in the objective function. The matrices V ′ and W ′ in
the learning filer for RILC are dynamic filters that depend on the value of the
maximum convergence ratio γ and the uncertainty weighting filters M and N .
The effect of the choice of these variables on the convergence properties of RILC
is analysed in more detail in section 4.4.

Substitution uk from equation (4.34) in the objective function in equa-
tion (4.31) yields the following expression for the optimal objective function

J (s)k
= wkT Xwk, (4.38)

where matrix X is a function of Ĝ, M , N , γ and R. The SCRC is satisfied if
the matrix X is negative definite.

The lifted expressions for the optimal learning filter and the optimal ob-
jective function are used for the analysis of the robustness and convergence
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properties of RILC in section 4.4. However, the lifted expressions are not suited
for practical implementation of RILC for long iterations, because the number of
elements of the lifted matrices in these equations is proportional to the square
of the length of the iteration and thus the computations are time-consuming for
long iterations.

Derivation of the Nash solution

Hereafter, the optimal qk and uk are derived without taking into account that
qk can be a function of uk. The objective function is optimised with respect to
both inputs for the worst case effect of the other input, such that a deviation
of either of the inputs from their optimum yields a smaller or a larger objective
function respectively. The objective function has a minimum with respect to
uk for any qk and a maximum with respect to qk for any uk in case its second
order derivatives with respect to these variables are positive definite and negative
definite respectively, i.e.,

2NT N − 2γ2I < 0, (4.39a)

2Ĝ
T
Ĝ + 2MT M > 0. (4.39b)

Again, condition (4.39a) is satisfied if the spectral norm of the post-weighting fil-
ter N is taken sufficiently small. Condition (4.39b) is satisfied if the system ma-
trix Ĝ is nonsingular and otherwise the selection of a non-singular pre-weighting
filter M is sufficient to satisfy the condition.

If conditions (4.39) are satisfied, then the minimising uk and the maximis-
ing qk are obtained by equating the derivatives of the objective function J (s)k

(equation (4.27)) with respect to these variables to zero, resulting in

2Ĝ
T

(

Rwk + Ĝuk + Nqk
)

+ 2MT Muk = O, (4.40)

2NT
(

Rwk + Ĝuk + Nqk
)

− 2γ2qk = O. (4.41)

Solving qk from equation (4.41) yields

qk =
(

γ2I −NT N
)−1

NT
(

Rwk + Ĝuk
)

, (4.42)

Substitution of this expression for qk in equation (4.40) gives

Ĝ
T

(

I + N
(

γ2 −NT N
)−1

NT

)

(

Rwk + Ĝuk
)

+ MT Muk =

Ĝ
T
γ2

(

γ2I −NNT
)−1 (

Rwk + Ĝuk
)

+ MT Muk = O, (4.43)

where the Woodbury-formula (Golub and Van Loan, 1996) is used to obtain
the second equality. Solving uk from equation (4.43) gives the following explicit
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expression for the optimal compensable input

uk = −Lwk, (4.44)

where the optimal learning filter is of the form

L =

(

Ĝ
T
γ2

(

γ2I −NNT
)−1

Ĝ + MT M

)−1

Ĝ
T
γ2

(

γ2I −NNT
)−1

R.

(4.45)
The optimal input qk is obtained by substitution of equation (4.44) in equa-
tion (4.42). The optimal objective function is obtained by subsequent substitu-
tion of qk from equation (4.44) and uk from equations (4.44) and (4.45) in the
objective function from equation (4.27).

Comparison

The conditions for the existence of the Stackelberg solution for the maximis-
ing input qk (inequality (4.28)) and conditions for the Nash solution (inequal-
ity (4.39a)) are the same, but the conditions for the existence of the Stackelberg
solution for the minimising input uk (inequalities (4.32)) differs from the condi-
tion for the Nash solution (inequality (4.39b)). Nonetheless, the conditions for
the existence of the Nash-solution (inequalities (4.39)) are sufficient to satisfy the
condition for the existence of the Stackelberg solution for uk (inequality (4.32)).
This can be explained by the fact that the Stackelberg solution of uk needs to
be minimising only for the worst case qk, while the Nash solution of uk needs
to be minimising for any qk.

The optimal input uk expressed in equation (4.34) with the learning ma-
trix from equation (4.35) is the same input as expressed by equations (4.44)
and (4.45). The optimal inputs qk expressed by equations (4.30) and (4.42)
are the same as well. Furthermore, the resulting values of the optimal objec-
tive functions are also the same. The Stackelberg and the Nash solution thus
yield the same optimal inputs and the same optimal objective function if the
conditions for their existence are satisfied. This result is consistent with known
results from differential game theory.

From the previous it can be concluded that the minimising uk and the op-
timal objective function for the considered (Stackelberg) problem can be com-
puted without taking into account that qk can be a function uk, i.e., by deriving
the Nash solution. Moreover, the conditions for the existence of the Nash solu-
tions for uk and qk are sufficient for the existence of the Stackelberg solution
for those variables, where qk can be a function of uk.

4.3.2 Solution using dynamic game theory

In this section the design objective that defines the optimal learning filter for
RILC is rewritten to a finite-horizon dynamic game. This dynamic game can be
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solved using an existing algorithm, yielding a computationally efficient algorithm
for the optimal learning filter. Besides, the solution of the dynamic game yields
an expression for the optimal objective function in terms of the compensable
summed error. This expression is used to derive a computationally efficient
procedure for checking the SCRC. The procedure is based on optimal control
theory.

Assumptions

Before the formulation of the dynamic game, some assumptions are made on
the dynamics associated with Ĝ, N , M and R.

As stated in section 4.1, it is assumed that RILC is applied to a strictly
proper system and thus the estimate of the system dynamics Ĝ is strictly proper
as well. Moreover, because there is no uncertainty about the properness of the
system, strictly proper dynamics can be taken for either the pre-weighting filter
M or the post-weighting filter N . In this work strictly proper dynamics are
taken for M and proper dynamics is taken for N .

In subsection 4.4.3 it is argued that a smaller final error can be realised using
a non-causal robustness filter than using a causal robustness filter. Therefore,
the robustness filter R is allowed to be non-causal in the derivation of the
optimal learning filter. A non-causal robustness filter needs special attention in
the solution of the optimal learning filter with dynamic game theory, because
conventional dynamic game theory assumes causal dynamics. It is assumed
that the non-causal robustness filter is implemented as an anti-causal part and
a causal part connected in series, i.e.,

R =
−→

R
←−

R
T

, (4.46)

where the causal part is denoted as
−→

R and the anti-causal part as
←−

R
T

. Matrices
−→

R and
←−

R are associated with causal and proper dynamics and the transpose on
the second part makes this part anti-causal. A phase-less robustness filter can
be implemented by taking the same dynamics for

−→

R and
←−

R . It should be noted
that any matrix R can be decomposed in a causal and an anti-causal part as in
equation (4.46) using LU-factorisation. The following variables are introduced
as the output of the anti-causal part and the causal part of the robustness filter
with the compensable summed error as the input

←−r
k

=
←−

R
T

wk, (4.47a)

−→r
k

=
−→

R←−r
k
. (4.47b)

Table 4.1 lists the state vectors and the state-space matrices that are asso-
ciated with the lifted matrices Ĝ, M , N ,

−→

R and
←−

R . These variables are used
hereafter for the solution of the optimal learning filter for RILC using dynamic
game theory.
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The optimal learning filter

The design objective for the optimal learning filter is expressed in terms of the
compensable input, which is the output of the learning filter, by equation (4.25),
and the objective function is given in equation (4.23). These equations are
formulated in terms of the time-samples of the various signals as

ǔk
i = arg min

uk

i

max
qk

i

J (s)k
, (4.48)

J (s)k
,

Ni−1
∑

i=1

(

wk+1
i+1

Twk+1
i+1 + pk

i+1
T pk

i+1 − γ2wk
i+1

Twk
i+1 − γ2qk

i+1
T qk

i+1

)

.

(4.49)

Since Ĝ and M are strictly proper, the time samples qk
1 , pk

1 , wk
1 and wk+1

1 are
not a function of uk

i and these are not included in the objective function.
The time-samples of the dependent variables wk+1

i and pk
i are related to

uk
i , qk

i and wk
i by the state-space equations associated with the standard-plant

equation (4.15). These state-space equations are formulated hereafter using
the state variables and state-space matrices from table 4.1. The state-space
equations associated with the first row of equation (4.15) are

xk
i+1 = Aix

k
i +Biu

k
i , (4.50a)

νk
i+1 = A

(N)
i νk

i +B
(N)
i qk

i , (4.50b)

xk
1 = O, νk

1 = O, (4.50c)

wk+1
i = −→r k

i + Cix
k
i + C

(N)
i νk

i +D
(N)
i qk

i , (4.50d)

and the state-space equations associated with the second row equation (4.15)
are

µk
i+1 = A

(M)
i µk

i +B
(M)
i uk

i , (4.51a)

µk
1 = O, (4.51b)

pk
i = C

(M)
i µk

i . (4.51c)

lifted matrix Ĝ M N
−→

R
←−

R

state vector xi µi νi
−→ρ i

←−ρ i

state-transition matrix Ai A
(M)
i A

(N)
i A

(
−→
R)

i A
(
←−
R)

i

input matrix Bi B
(M)
i B

(N)
i B

(
−→
R)

i B
(
←−
R)

i

output matrix Ci C
(M)
i C

(N)
i C

(
−→
R)

i C
(
←−
R )

i

feedthrough matrix - - D
(N)
i D

(
−→
R)

i D
(
←−
R)

i

Table 4.1: The state variables and matrices corresponding to the lifted matrices
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The state-space equations associated with the anti-causal part of the robustness
filter (equation (4.47a)) are

←−ρ k
i−1 = A

(
←−
R)

i
T←−ρ k

i + C
(
←−
R)

i
Twk

i , (4.52a)

←−ρ k
Ni

= O, (4.52b)

←−r k
i = B

(
←−
R)

i
T←−ρ k

i +D
(
←−
R)

i
Twk

i , (4.52c)

and the state-space equations associated with the causal part of the robustness
filter (equation (4.47b)) are

−→ρ k
i+1 = A

(
−→
R)

i
−→ρ k

i +B
(
−→
R)

i
←−r k

i , (4.53a)

−→ρ k
1 = O, (4.53b)

−→r k
i = C

(
−→
R)

i
−→ρ k

i +D
(
−→
R)

i
←−r k

i . (4.53c)

Equations (4.48)-(4.53) define a dynamic game with inputs wk
i , uk

i and qk
i ,

where inputs uk
i and qk

i should minimise and maximise the quadratic objec-
tive function in equation (4.49) respectively. Başar and Olsder (1995) describe
algorithms to compute the optimal opposing inputs of dynamic games with a
quadratic objective function that only depends on the opposing inputs and the
state of a causal dynamic system. Such dynamic game is formulated using the
state-equations of the system, the uncertainty weighting filters and the causal
part of the robustness filter (equations (4.50), (4.51) and (4.53)). The anti-causal
part of the robustness filter (equation (4.52)) is not included in the formulated
dynamic game, because its state equation is not causal and the output of this
filter, which is the input to the causal part of the robustness filter and thus
an input of the formulated dynamic game, only depends on the input wk

i and
not on the minimising input uk

i or the maximising input qk
i . The effect of the

anti-causal part of the robustness filter is added to the solution of the dynamic
game later on to obtain the algorithm for the learning filter. The dynamic
game is formulated by concatenating state equations (4.50), (4.51) and (4.53),
extending the state with the inputs of these state-equations and expressing the
objective function from equation (4.49) in terms of the state and the input of
the extended state equation, yielding

x̃i+1 = Ãix̃i + B̃
(u)
i ũi + B̃

(q)
i q̃i + B̃

(v)
i ṽi, (4.54a)

ˇ̃ui = arg min
ũi

max
q̃i

J (s)k
, (4.54b)

J (s)k
=

N−1
∑

i=1

(

x̃i+1
T Q̃i+1x̃i+1 + ũi

T R̃
(u)
i ũi + q̃i

T R̃
(q)
i q̃i + w̃i

T R̃
(w)
i w̃i

)

, (4.54c)

where,

x̃i =
[

xk
i

T −→ρ k
i

T µk
i

T νk
i

T uk
i−1

T qk
i

T ←−r k
i

T

]T

(4.55a)
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x̃1 =
[

O O O O O O O
]T
, (4.55b)

ũi = uk
i , (4.55c)

q̃i = qk
i+1, (4.55d)

ṽi =←−r k
i+1, (4.55e)

w̃i = wk
i+1 (4.55f)

Ãi =























Ai O O O O O O

O A
(
−→
R)

i O O O O B
(
−→
R)

i

O O A
(M)
i O O O O

O O O A
(N)
i O B

(N)
i O

O O O O O O O
O O O O O O O
O O O O O O O























, (4.55g)

B̃
(u)
i =

[

BT
i O B

(M)
i

T O I O O
]T

, (4.55h)

B̃
(q)
i =

[

O O O O O I O
]T
, (4.55i)

B̃
(v)
i =

[

O O O O O O I
]T
, (4.55j)

C̃
(w)
i =

[

Ci C
(
−→
R)

i O C
(N)
i O D

(N)
i D

(
−→
R)

i

]

, (4.55k)

C̃
(p)
i =

[

O O C
(M)
i O O O O

]

, (4.55l)

C̃
(u)
i =

[

O O O O I O O
]

, (4.55m)

Q̃i+1 = C̃
(w)
i+1

T C̃
(w)
i+1 + C̃

(p)
i+1

T C̃
(p)
i+1 − C̃

(u)
i+1

T R̃
(u)
i C̃

(u)
i+1, (4.55n)

R̃
(q)
i = −γ2I, (4.55o)

R̃
(w)
i = −γ2I. (4.55p)

Matrix R̃
(u)
i may be any positive definite symmetric matrix. This matrix is

used for the implementation of the algorithm that solves the dynamic game,
but its value does not affect the optimal inputs ũi and q̃i and the resulting
value of the optimal objective function. The last term of the objective function
depends on the input w̃i = wk

i+1, which is not a function of the minimising input
uk

i or the maximising input qk
i , but only related to the input ṽi =←−r k

i+1 via the
inverse of the anti-causal part of the robustness filter (equation (4.52)). This
term can thus be ignored in the computation of the optimal inputs uk

i and qk
i .

Without the last term in the objective function, equations (4.54) define the
affine quadratic two-person zero-sum dynamic game as analysed by Başar and
Olsder (1995).

Başar and Olsder (1995) give the solution of the inputs of the dynamic
game for the case where one optimising input is a function of the other optimis-
ing input (the Stackelberg solution, page 278) and the case where both inputs
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optimise the objective independently (the Nash solution, page 275). The algo-
rithm to solve the first problem requires the solution of a coupled causal and
anti-causal matrix difference equation, while the algorithm to solve the second
problem involves only a single anti-causal matrix convolution. The problem
defined in section 4.2 is of the Stackelberg type, but it is concluded in subsec-
tion 4.3.1 that the Nash solution of the optimisation problem yields the same
optimal inputs. In this work the algorithm to compute the Nash solution is
used instead of the algorithm to solve the Stackelberg solution. The advantage
of this approach is that no algorithm to solve the complex coupled matrix dif-
ference equation of the Stackelberg solution is needed. The procedure to solve
the dynamic game is given at the end of appendix B.2 and yields the optimal
values of the inputs ũi and q̃i as a function of ṽi. The procedure consists of
the solution of a non-stationary Riccati difference equation, the solution of a
causal state-convolution and an anti-causal state-convolution. The number of
computational operations of the procedure scales linearly with the length of the
iteration. The first step of the procedure checks if the optimal inputs ũi and
q̃i indeed minimise and maximise the objective function. These conditions are
equivalent to conditions (4.39) for the lifted solution of the optimal learning fil-
ter described in subsection 4.3.1. As explained in that section, these conditions
are sufficient and can be satisfied by an appropriate selection of γ, N and M .

The solution of the dynamic game from appendix B.2 provides an algorithm
to compute the optimal compensable input uk

i from the output of the anti-
causal part of the robustness filter ←−r k

i . The anti-causal part of the robustness
filter relates its output ←−r k

i to the compensable summed error wk
i as in equa-

tions (4.52). Together, the solution of the dynamic game and the anti-causal
part of the robustness filter relate the optimal compensable input to the com-
pensable summed error and they compose the algorithm for the optimal learning
filter.

The optimal objective function

The solution of the dynamic game and the anti-causal part of the robustness
filter constitute an algorithm to compute the optimal compensable input ũi and
the worst case effect of the uncertainty q̃i from the compensable summed error
w̃i. Hereafter it is shown that those optimal inputs result in an optimal objective
function that depends only on the compensable summed error. Moreover it is
shown that optimal control theory can be used to check if the optimal objective
function is negative definite with respect to the compensable summed error,
which is the SCRC.

Appendix B.2 shows that for the optimal inputs ũi and q̃i the objective
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function of the dynamic game can be expressed as

J (s)k
=

(

2η̃1 + S̃1x̃1

)T

x̃1 +

N−1
∑

i=1

((

2η̃i+1 + S̃i+1B̃
(v)
i ṽi

)

L̃−1
i B̃

(v)
i ṽi

−η̃T
i+1Q̃

(η)
i+1η̃i+1 + w̃i

T R̃
(w)
i w̃i

)

, (4.56)

where

η̃i = ÃT
i S̃i+1L̃

−1
i

(

P̃iη̃i+1 + B̃
(v)
i ṽi

)

+ ÃT
i η̃i+1, (4.57a)

η̃N = O. (4.57b)

Matrices S̃i, L̃i, P̃i and Q̃
(η)
i are functions of matrices Ãi, B̃

(u)
i , B̃

(q)
i , B̃

(v)
i ,

Q̃i, R̃
(q)
i and R̃

(w)
i as defined in appendix B.2. The expression for the optimal

objective function in equation (4.56) is a function of the compensable summed
error w̃i = wk

i+1 and the output of the anti-causal part of the robustness filter
ṽi =←−r k

i+1. According to the expression for the anti-causal part of the robustness
filter in equations (4.52), its output is a function of the compensable summed
error as well. Thus, the optimal objective function is only a function of the
compensable summed error.

The convergence analysis in subsection 4.2.3 states that the SCRC is sat-
isfied if the optimal objective function is negative definite with respect to the
compensable summed error. This condition is verified by maximising the opti-
mal objective function with respect to w̃i = wk

i+1 and checking if this maximum
is not positive. The maximisation objective, the expression for the optimal ob-
jective function in equation (4.56), the co-state equation (4.57) and the state
equation (4.52) of the anti-causal part of the robustness filter constitute the
following dynamic game

˜̃ηi−1 = ˜̃Ai
˜̃ηi + ˜̃B

(u)

i
˜̃ui, (4.58a)

ˇ̃̃ui = arg max
˜̃ui

J (s)k
, (4.58b)

J (s)k
=

N
∑

i=2

(

˜̃ηi−1
T ˜̃Qi−1

˜̃ηi−1 + ˜̃ui
T ˜̃R

(u)

i
˜̃ui

)

, (4.58c)

where, assuming x̃1 = O,

˜̃ηi =
[

η̃T
i+1

←−ρ k
i

T ṽT
i

]T

=
[

η̃T
i+1

←−ρ k
i

T ←−r k
i+1

T

]T

, (4.59a)

˜̃ηNi
=

[

O O O
]T
, (4.59b)

˜̃ui = w̃i−1 = wk
i , (4.59c)
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˜̃Ai =









ÃT
i

(

I + S̃i+1L̃
−1
i P̃i

)

O ÃiT S̃i+1L̃
−1
i B̃

(v)
i

O A
(
←−
R)

i
T O

O B
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i
T O









, (4.59d)

˜̃B
(u)

i =
[

O C
(
←−
R)

i D
(
←−
R)

i

]T

, (4.59e)

˜̃Qi =







Q̃
(η)
i+1 O L̃−1

i B̃
(v)
i
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B̃
(v)
i

T L̃−T
i O B̃

(v)
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T S̃i+1L̃
−1
i B̃

(v)
i






, (4.59f)

˜̃R
(u)

i = R̃
(w)
i = −γ2I. (4.59g)

Equations (4.58) define an affine quadratic discrete-time optimal control prob-
lem with an anti-causal state convolution. The affine quadratic discrete-time
optimal control problem with a causal state-convolution is analysed by Başar
and Olsder (1995) and the procedure to solve this problem is given at the end
of appendix B.1. Replacing each time-index i by Ni + 1− i in this procedure
yields a procedure to solve the optimal control problem with anti-causal state-
convolution defined in equations (4.58). The procedure yields the optimal value
of ˜̃ui = w̃i−1 = wk

i and the optimal value of the objective function. The optimal
values of the compensable summed error and the optimal objective function
are zero, because the compensable summed error wk

i is the only input to the
state-equation and ˜̃ηNi

= 0. The second step of the procedure described in ap-
pendix B.1 verifies if the optimal value of the objective function is a maximum
with respect to the compensable summed error. If that condition is satisfied
then the maximum of the objective function is zero and thus the optimal objec-
tive function is negative definite with respect to the compensable summed error.
The negative definiteness of the optimal objective function with respect to the
compensable summed error is the SCRC formulated in subsection 4.2.3. The so-
lution of the anti-causal optimal control problem thus gives a procedure to check
the SCRC. The procedure consists of the solution of a non-stationary Riccati
difference equation and checking if a time-varying matrix related to the solution
of this difference equation is negative definite at each time step. The number of
computational operations scales linearly with the length of the iteration.

Discussion

The number of computational operations to compute the optimal learning fil-
ter and to check the SCRC using the algorithms described in this subsection
depends on the state-dimension and scales linearly with the number of time
steps Ni. The number of computational operations to compute the optimal
learning filter using the algorithm from subsection 4.3.1 does not depend on
the state-dimension but scales at least quadratically with Ni as it involves the
computation of the inverse of a lifted matrix. The procedure described in this
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subsection is thus more efficient than the algorithm from subsection 4.3.1 for
systems with a low state dimension and a large number of time steps. Moreover,
the algorithm is suited for LTV systems and uses no measurements of the error
from previous iterations. The algorithm thus meets the requirements following
from the objective of this thesis (see section 1.2) and therefore it is used to
compute the optimal learning filter for the experiments of which the results are
described in chapter 6.

4.4 Convergence Analysis

In this section the convergence properties of the proposed RILC algorithm are
analysed. In particular, the effects of the robustness filter and the uncertainty
weighting filters on the convergence properties are investigated. In subsec-
tion 4.4.1 the conditions for convergence of the error and the summed error
are derived. Moreover, an expression for the final error is given. In subsec-
tion 4.4.2 the convergence analysis is elaborated for systems with a particular
type of model uncertainty for which the contribution of components of the com-
pensable summed error to the optimal objective function can be decoupled. In
subsection 4.4.3 the results from the convergence analysis are used to formulate
guidelines for the selection of the maximum convergence ratio, the uncertainty
weighting filters and the robustness filter.

4.4.1 Convergence analysis

Convergence of the summed error

In section 4.2 the convergence of the summed error is analysed for the formula-
tion of the design objective for the learning filter of RILC. The objective function
is formulated such that the summed error converges robustly and monotonically
with a convergence ratio of at most γ if the optimal objective function, i.e., the
objective function for the optimal compensable input and the worst-case effect
of the uncertainty, is negative definite with respect to the compensable summed
error. This condition, referred to as the SCRC, can be checked using the algo-
rithms proposed in section 4.3.

From equation (4.5) it follows that if R = I then convergence of the summed
error implies that the error converges to zero. Thus if the SCRC is satisfied and
no robustness filter is used, then the error converges robustly to zero. However,
if the model uncertainty is large, then the SCRC cannot be satisfied for R = I

and a non-unity robustness filter is needed to guarantee robust convergence.
An example of the relation between the choice of the robustness filter and the
allowable size of the model uncertainty for a specific type of uncertainty is given
in subsection 4.4.2.

Hereafter, it is shown that the SCRC is satisfied for any size of the model
uncertainty by taking R = O. The optimal learning filter, which is expressed
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by equation (4.35), becomes L = O for this choice of the robustness filter. Sub-
stitution of L = O in equation (4.11) gives uk = O and substitution of uk = O

in the second row of equation (4.15) gives pk = O, which according to equa-
tions (4.13b) gives qk = O. Substitution of R = O, uk = O and qk = O in
the first row of equation (4.15) gives wk+1 = O. Substitution of pk = O,
qk = O and wk+1 = O in the objective function from equation (4.23) yields
J (s)k

= −γ2
∥

∥wk
∥

∥

2

2
. This objective function is negative definite with respect to

the compensable summed error and thus the SCRC is satisfied if R = O for any
model error. It is thus possible to select a robustness filter such that the SCRC
is satisfied for any model uncertainty. However, it should be noted that the case
R = O is trivial because no learning is applied.

Convergence of the error

Firstly, the convergence of the error is analysed if no robustness filter is applied,
i.e., R = I, then the effect of a robustness filter on the convergence of the error
is considered. Substitution of equation (4.4) in equation (4.1) and subtracting
the result for iteration k from the result for k + 1 yields

ek+1 = ek −
(

Ĝ + N∆M
)

L
(

zk+1 − zk
)

. (4.60)

Substituting equation (4.3), which is the update equation for R = I, gives

ek+1 =
(

I − ĜL−N∆ML
)

ek. (4.61)

Thus, the error thus converges monotonically to zero if

∥

∥

∥
I − ĜL−N∆ML

∥

∥

∥

i2
< 1. (4.62)

Note that this condition is identical to condition (4.7) for convergence of the
summed error if R = I. Thus, if no robustness filter is applied, then the condi-
tions for robust monotonic convergence of the summed error and the condition
for robust monotonic convergence of the error to zero coincide. Both conditions
are satisfied if the SCRC is satisfied, which can be checked using the algorithms
proposed in section 4.3.

The SCRC might not be satisfied if the model uncertainty is large and no
robustness filter is applied. However, the SCRC can be satisfied for any model
uncertainty by choosing a non-unity robustness. Satisfying the SCRC implies
monotonic convergence of the summed error and thus convergence of the error,
though monotonic convergence of the error is not necessarily guaranteed for a
non-unity robustness filter. Nevertheless, an expression for the final error can
be derived. If the summed error converges then equations (4.7) and (4.8) hold
and thus

z∞ =
(

I −R + ĜL + N∆ML
)−1

d. (4.63)
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Combining this relation with equation (4.5) yields the following expression for
the final error

e∞ = (I −R)z∞ = (I −R)
(

I −R + ĜL + N∆ML
)−1

d. (4.64)

This equation shows that for R = I the error converges to zero, which is consis-
tent with the previous analysis. For any other choice of the robustness filter the
final error could be non-zero and depends on the actual model error. The ex-
treme case R = O, which implies L = O by equation (4.35), results in e∞ = d,
which is trivial because no learning is applied in this case.

4.4.2 Decoupled convergence analysis

In this subsection the convergence analysis for RILC is elaborated for square
systems with a special type of model uncertainty. The only uncertainty is as-
sumed to be the size of the singular values of the estimated lifted system matrix.
The contribution of components of the compensable summed error to the op-
timal objective function can be decoupled for this case. The SCRC is then
satisfied if the objective function is negative definite with respect to each of
the components of the compensable summed error, which facilitates the con-
vergence analysis. The results from the analysis are valid if there is no model
uncertainty, i.e., M = O. Moreover, the decoupled analysis is illustrative other
types of uncertainty like uncertainty in the modelled frequency response of an
LTI system, because a close relation exists between the singular values of the
lifted system matrix of an LTI system and the frequency response of the system
(see subsection 3.4.3).

Preliminaries

Consider the singular value decomposition of the estimated system matrix Ĝ

given in equation (3.45). It is assumed that the only uncertainty is the size of the
singular values of the estimated system matrix, i.e., it is known that the response
of the real system to a column of T is proportional to the corresponding column
of U , but the gain of the response is uncertain. The additive uncertainty in the
size of each singular value si is assumed to be bounded as δimi with |δi| < 1.

An appropriate set of uncertainty weighting filters for the considered type
of uncertainty is

M = 1
β
TM̄T T , (4.65a)

N = βI, (4.65b)

where the pre-weighting filter M̄ is a diagonal matrix with elements mi on
its diagonal and the weight ratio β is a scalar which can be used to scale the
relative size of the uncertainty weighting filters without affecting the overall
size of the specified system uncertainty (a similar weight ratio is used for the
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transformation in equations (4.2)). For these uncertainty weighting filters, an
additive error of δimi in each singular value of the system dynamics is obtained
by the following normalised uncertainty matrix

∆ = U∆̄T T , (4.66)

where ∆̄ is a diagonal matrix with elements δi on its diagonal. Since U and T

are orthogonal and |δi| < 1, the following relation holds

‖∆‖i2 =
∥

∥∆̄
∥

∥

i2
= max

i
δi < 1. (4.67)

The spectral norm of the normalised uncertainty matrix is thus less than 1 for
the chosen set of weighting filters.

The robustness filter R is chosen such that the components of the summed
error in the column space of U are filtered independently, i.e.,

R = UR̄UT , (4.68)

where R̄ is a diagonal matrix with elements ri on its diagonal. No robustness
filter is applied if R = I, which implies ri = 1 by the orthogonality of U .

With the aforementioned choice of the weighting filters and the robustness
filter, the expression for the system equations and the objective function can be
decoupled in terms of the components of the following transformed vectors

z̄k = UT zk, w̄k = UT wk, p̄k = T T pk, q̄k = UT qk. (4.69)

The first two rows of the expression for the standard plant in equation (4.15)
can be expressed in terms of the components of these transformed vectors as

w̄k+1
i = riw̄

k
i + siū

k
i + βq̄k

i (4.70a)

p̄k
i = miū

k
i , (4.70b)

where the subscript i denotes the ith component of the transformed lifted vector.
The objective function for RILC, which is defined in equation (4.23), can be
expressed in terms of the components of these transformed vectors as

J (s)k
= w̄k+1T w̄k+1 + p̄kT p̄k − γ2w̄kT w̄k − γ2q̄kT q̄k =

∑

i

(

(

w̄k+1
i

)2
+

(

p̄k
i

)2 − γ2
(

w̄k
i

)2 − γ2
(

q̄k
i

)2
)

, (4.71)

where the orthogonality of U and T is exploited.
According to the design objective for RILC, formulated in equation (4.25),

the optimal compensable input uk should minimise the objective function for
a maximising effect of qk. In subsection (4.3.1) it is concluded that condi-
tions (4.39) are sufficient for the existence of a minimising uk and a maximising
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qk. Substitution of the uncertainty weighting matrices from equation (4.65) in
those conditions yields the following set of decoupled inequalities

s2i +
m2

i

β2
> 0, (4.72a)

β2 − γ2 < 0. (4.72b)

These conditions are satisfied by selecting β such that β2 < γ2 and selecting
mi 6= 0 if si = 0. If conditions (4.72) are satisfied, then the minimising uk and
the maximising qk are expressed by equations (4.34) and (4.30) respectively.
Substitution of the uncertainty weighting matrices from equations (4.65) and
the robustness filter from equation (4.68) and using the transformations from
equation (4.69) yields the following decoupled equations

q̄k
i = β

γ2−β2

(

riw̄
k
i + siū

k
i

)

, (4.73a)

ūk
i = −liw̄k

i , (4.73b)

where

li =
γ2β2siri

γ2β2s2i + (γ2 − β2)m2
i

. (4.74)

Thus, the algorithm for computing the optimal compensable input is reduced to
a set of scalar equations in terms of the components of the transformed vectors.
Note that the structure of ∆ in equation (4.66) is not used for the derivation
of the optimal inputs in equations (4.73). These inputs are thus also optimal
for any ‖∆‖i2 < 1 that does not comply with the structure in equation (4.66).
Using system equations (4.70) and the expressions for the optimal inputs from
equation (4.73), the optimal objective function from equation (4.71) can be
expressed in terms of w̄k

i only as

J (s)k
=

∑

i

J (s)k

i

(

w̄k
i

)2
, (4.75a)

where,

J (s)k

i = −γ2 γ
2β2s2i +

(

γ2 − β2 − r2i
)

m2
i

γ2β2s2i + (γ2 − β2)m2
i

=

− γ2

(

1− r2im
2
i

γ2β2s2i + (γ2 − β2)m2
i

)

. (4.75b)

Each component of the transformed compensable summed error thus contributes
independently to the objective function. If J (s)k

i < 0 for all i then the optimal
objective function is negative definite with respect to all components of the
compensable summed error, which means that the SCRC is satisfied (see sec-
tion 4.2).
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No uncertainty

Hereafter, a non-singular system with no uncertainty in the size of the singular
values is considered. Substitution of si 6= 0 and mi = 0 in equation (4.75b)
yields

J (s)k

i = −γ2 (4.76)

for all i, which implies that the SCRC is satisfied and robust convergence is
guaranteed. The proposed RILC algorithm thus results in robust convergence
of the summed error with a maximum convergence rate γ if the dynamics of
the controlled system are non-singular and there is no model uncertainty. The
convergence for mi 6= 0 is analysed hereafter.

Without a robustness filter

According to the analysis in subsection 4.4.1, the error converges monotonically
to zero if the SCRC is satisfied and no robustness filter is applied, i.e., R = I.
Substitution of ri = 1 in equation (4.75b) gives

J (s)k

i = −γ2

(

1− m2
i

γ2β2s2i + (γ2 − β2)m2
i

)

(4.77)

The value of J (s)k

i is negative if

m2
i <

β2

1− γ2 + β2
γ2s2i , (4.78)

Since γ2β2/(1− γ2 + β2) < 1 for any γ2 < 1 and β2 < γ2 (condition (4.72b)),
J (s)k

i < 0 can only be satisfied if m2
i < s2i . This implies that the SCRC is only

satisfied for ri = 1 if the uncertainty in each singular value of the model is
smaller than the size of the singular value. Moreover, the smaller the maximum
convergence ratio, which is specified by γ, the smaller the ratio |mi/si| for which
the SCRC is satisfied if ri = 1. These conclusions are confirmed by figure 4.3,
which shows J (s)k

i as a function of |mi/si| for several values of the maximum
convergence ratio γ and the weight ratio β. The figure also shows that the
smaller β, the smaller the ratio |mi/si| for which J (s)k

i < 0.

With a robustness filter

Above it is shown that the SCRC can only be satisfied for ri = 1 if |mi/si| < 1.
Thus, robust convergence is not guaranteed if |mi/si| ≥ 1 and ri = 1. However,
the SCRC can be satisfied for |mi/si| ≥ 1 by taking ri 6= 1. The expression
for J (s)k

i for ri 6= 1 is given in equation (4.75b). From this equation it can be
derived that J (s)k

i is negative definite if

r2im
2
i <

(

γ2 − β2
)

m2
i + β2γ2s2i (4.79)
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Figure 4.3: The objective function component J (s)k

i as a function of the additive
uncertainty (|mi/si|) for RILC without a robustness filter (ri = 1)

This inequality can be satisfied for any mi by taking r2i < γ2 − β2. Thus the
SCRC, which implies monotonic convergence of the summed error with a maxi-
mum convergence ratio γ, can be satisfied for any size of the model uncertainty
if r2i is taken sufficiently small.

Figure 4.4 shows J (s)k

i as a function of |mi/si| for several values of the
maximum convergence ratio γ, the weight ratio β and the robustness filter
component ri. The figure shows that the range of |mi/si| for which J (s)k

i < 0 is
enlarged by taking a small value of r2i or a large value of γ2. The effect of the
weight ratio β on the range of |mi/si| for which J (s)k

i < 0 depends on the value
of γ and ri.

4.4.3 Parameter selection

In the preceding subsections the convergence properties of the proposed RILC
algorithm are analysed. In particular, the effects of the maximum convergence
ratio, the robustness filter and the uncertainty weighting filters on the conver-
gence of the summed error and the final error are analysed. In this subsection
several guidelines for the selection of these parameters are formulated, based on
the results of the convergence analysis. The guidelines are partly based on the
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Figure 4.4: The objective function component J (s)k

i as a function of the additive
uncertainty (mi/si) for RILC with a robustness filter

analysis in subsection 4.4.2, in which it is assumed that the system is square
and the only model uncertainty is the size of the singular values of the system
matrix.

Selection of the maximum convergence ratio

The convergence analysis in section 4.2 shows that the convergence ratio of the
summed error is γ at most if the SCRC is satisfied for that value of γ. The
value of γ can thus be used to specify the desired maximum convergence ratio.

The objective function depends on the selected value of γ according to equa-
tion (4.27). The optimal objective function should be negative definite for the
specified model uncertainty to satisfy the SCRC and thus the allowable model
uncertainty for which the SCRC is satisfied depends on the value of γ. In sub-
section 4.4.2 it is shown by equation (4.78), figures 4.3 and 4.4 that a small
value of γ decreases the model uncertainty for which the SCRC is satisfied.

The selection of γ can thus be used to set the maximum convergence rate,
but it affects the allowable model uncertainty. A small value of γ should be
taken to decrease the maximum convergence ratio, but from subsection 4.4.2 it
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is concluded a large value of γ should be taken to increase the allowable model
error.

Selection of the robustness filter

Preferably, no robustness filter should be used, because then the error converges
to zero robustly and monotonically according to equation (4.61) if the SCRC is
satisfied. In subsection 4.4.2 it is shown that the SCRC is satisfied if the system
is square, modelled perfectly and the model uncertainty is zero. However, the
SCRC is cannot be satisfied for a large model error if no robustness filter is
used. In subsection 4.4.2 it is shown that the SCRC cannot be satisfied without
a robustness filter if the uncertainty in the size of a singular value of the system
is larger than the size of that singular value. The convergence condition for
NILC without a robustness filter (equation (3.60)) can be satisfied if the signs
of the singular values of the estimated system model and the real system are
equal. Hence, the SCRC for RILC without a robustness filter is more strict than
the convergence condition for NILC without a robustness filter.

In subsection 4.4.1 it is shown that the SCRC can only be satisfied for large
model uncertainty by using a (non-unity) robustness filter, though the appli-
cation of a robustness filter can also result in a non-zero final error according
to equation (4.64). The SCRC can even be satisfied for any size of the model
uncertainty if the robustness filter is set to zero, though in this case the error is
not reduced at all. In subsection 4.4.2 it is shown that the SCRC can be satisfied
for a large uncertainty in the singular value by taking the corresponding gain of
the robustness filter smaller than unity (equation (4.79)).

RILC thus results in zero final error if no robustness filter is used and the
SCRC is satisfied. However, the robustness filter can be needed to increase the
robustness to model uncertainty, although this could result in a nonzero final
error. The robustness filter should thus be zero for the components of the error
corresponding to a large model uncertainty to obtain convergence, but close to
unity for the other components of the error to reduce these error components to
zero. In practice, the dynamics of mechanical systems are accurately known at
low frequencies but uncertain at high frequencies. The robustness filter should
then be a low-pass filter that is unity at low-frequencies and close to zero at
high frequencies. This behaviour can be realised by implementing the robustness
filter as a high-order zero-phase low-pass filter. The high-order results in a small
frequency band in which the low-pass filter rolls off from unity to zero. This
behaviour cannot be realised by a stable and causal low-pass filter as the roll-off
introduces phase-lag at low-frequencies, which makes the filter unequal to unity
at those frequencies.

Selection of the uncertainty weighting filters

The uncertainty weighting filters M and N should be selected such the un-
certainty in the system dynamics is expressed by G = Ĝ + N∆M for some
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‖∆‖i2 < 1. The selection of the uncertainty weighting filters is not unique, any
combination is appropriate as long as the uncertainty is specified appropriately.
Uncertainty weighting filters that appropriately specify the uncertainty can be
modified as in equation (4.2) for some real value of the weight ratio β without
affecting the specified overall uncertainty.

The uncertainty weighting filters should not only specify the uncertainty
appropriately, but they should also be selected such that the sufficient condi-
tions (4.39) for the existence of an optimal learning filter are satisfied. These
conditions are satisfied if the pre-weighting filter M is nonsingular and the spec-
tral norm of the post-weighting filter N is sufficiently small. The spectral norm
of the post-weighting filter can be decreased by modifying the set of weighting
matrices as in equation (4.2) using a sufficiently small value of the weight ratio
β.

The uncertainty weighting filters should thus appropriately specify the model
uncertainty and the conditions for the existence of an optimal learning filter
should be satisfied. Still some freedom exist in the selection of these filters.
This freedom can be used to satisfy the SCRC for a small value of the maximum
convergence ratio γ.

In subsection 4.4.2 the effect of the selection of the uncertainty weighting
filters on the convergence properties of RILC is illustrated for square systems
of which the model uncertainty is related to the singular values. The post-
weighting filter N is taken equal to the (scalar) weight ratio β and pre-weighting
filter M is defined such that an additive uncertainty mi for each singular value
si is specified appropriately. The sufficient conditions (4.39) for the existence of
the optimal learning filter are satisfied if β2 < γ2 and if mi 6= 0 for si = 0. The
convergence analysis shows that the smaller the value of mi, the smaller the
maximum convergence ratio γ for which the SCRC is satisfied. If no robustness
filter is applied, then selecting β close γ increases the value of mi for which the
SCRC is satisfied, though the SCRC can only be satisfied if |mi/si| < 1.

Guidelines for the selection of the uncertainty weighting filters are derived
from the decoupled analysis in subsection 4.4.2. The spectral norm of the post-
filter N should be taken smaller than γ to satisfy the condition for the existence
of an optimal learning filter, but only slightly smaller than γ to maximise al-
lowable uncertainty if R = I. The post-weighting filter M should be taken as
small as possible to maximise the convergence rate that can be realised, though
it should be taken sufficiently large to specify the dynamic model uncertainty
appropriately. A reasonable choice for the weighting filters, derived from the
previous considerations, is a static post-weighting filter N with a gain slightly
below γ, while the pre-weighting filter M is a dynamic filter that is just large
enough to specify the dynamic uncertainty appropriately. The proposed selec-
tion of the weighting filters differs from the static pre-weighting filter and the
dynamic post-weighting filter used by Van de Wijdeven and Bosgra (2007a). As
noted in their work, a dynamic pre-weighting filter and a static post-weighting
filter “may result in less conservative solutions”, which agrees with the previous
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analysis. The RILC algorithms proposed in subsections 4.3.1 and 4.3.2 can be
implemented with any combination of static and dynamic weighting filters.

Discussion

In the previous analysis it is concluded that the final error depends on the
selection of the robustness filter and the convergence rate is bounded by the
selected maximum convergence ratio and also depends on the selection of the
uncertainty weighting filters. The selection of the maximum convergence ratio,
the robustness filter and the uncertainty weighting filters all determine the al-
lowable model uncertainty. The best selection of these parameters for a certain
application thus depends on the model uncertainty, the desired convergence rate
and the allowable final error. The choice of these filters for the experiments on
the Stäubli RX90 robot is discussed in subsection 6.2.2.

The advantage of the proposed RILC algorithm over the NILC algorithm
from chapter 3 is that a maximum convergence rate can be specified explicitly
and the learning filter is optimised to realise this convergence ratio for the worst
case effect of the specified model uncertainty. Moreover, a condition is derived
that can be used to check if the specified convergence rate can be realised for the
specified model uncertainty and the selected robustness filter. A disadvantage
of the proposed RILC algorithm is that the used convergence condition is only
a sufficient condition. This conservativeness could lead to a convergence ratio
or a final error that are larger than those realised by, e.g., the NILC algorithm
from chapter 3.



Chapter 5

The experimental setup

This chapter describes the experimental setup that is used for testing the ILC
algorithms described in chapters 3 and 4. The results from the experiments
demonstrate the performance of the developed ILC algorithms in relation to the
requirements formulated in section 1.2. The experimental results are presented
in chapter 6.

The experimental setup, which consists of the Stäubli RX90 robot and aux-
iliary equipment, is described in section 5.1. The reduction of the tracking error
of this robot by ILC is tested for two trajectories, which are described in sec-
tion 5.2. The dynamics of the robot system along those trajectories are modelled
as described in section 5.3. These models are used for the implementation of
the ILC algorithms.

5.1 System description

The experimental setup is depicted in figure 1.2. A schematic overview of the
components of the experimental setup and their interconnections is shown in fig-
ure 5.1. The Stäubli RX90 robot manipulator is used for the experiments. The
motion of the joints of this manipulator is controlled in real-time by the indus-
trial CS8 controller. This controller supplies the currents for the motors in the
manipulator’s joints such that the actual joint angles approximately trace the
specified setpoints. The tracking error of the robot tip is measured by an optical
seam-tracking sensor, which is integrated with the welding head attached to the
robot. The measurements of this sensor are triggered by the CS8 controller and
the sensor returns the measured tip tracking errors to the CS8 controller. The
controller synchronises these measurements with the robot motion. ILC is used
to reduce the measured tip tracking errors by iteratively updating the setpoints
for the position of the robot tip. The components of the experimental setup are
described in more detail in the following subsections.
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Figure 5.1: The components of the experimental setup and their interconnec-
tions

5.1.1 Manipulator

The Stäubli RX90 robot manipulator (Stäubli, 2003a) is depicted in figures 1.2
and 5.2. The manipulator consists of stiff and lightweight aluminium links that
are interconnected by six revolute joints. The joints are numbered as shown in
figure 5.2(a). Joints 1 to 4 are so-called Stäubli Combined Joints (JCS), which
is an assembly containing the joint’s transmission and bearing. Joints 5 and 6
are driven by two motors located in link 4 via a worm and wheel gear for each
joint and a bevel gear for joint 6. The construction is such that the motion of
joint 5 is coupled to the motion of one of these motors and the motion of joint 6
is coupled to the motion of both motors. All joints are actuated by three-phase
servo motors, which are powered by the CS8 controller. Resolvers on the motor
axes measure the angle and angular velocity. These measurements are returned
to the CS8 controller (see figure 5.1).

The six joints allow manipulation of the end-flange of the robot to any po-
sition and orientation within the robot’s working range. The location of a tool
mounted to this end-flange is expressed by its position and orientation in the
global Oxyz coordinate system. The origin of this coordinate system is located
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Figure 5.2: The Stäubli RX90 robot

property value unit
reach between joints 2 and 5 900 mm
repeatability at end-effector ± 0.02 mm
maximum velocity at end-effector 11 m/s
nominal load capacity 6 kg
maximum load capacity 12 kg

Table 5.1: Characteristic properties of the Stäubli RX90 robot (Stäubli, 2003a)

at the crossing of the axis through joints 1 and 2 and its orientation is as illus-
trated in figure 5.2.

Table 5.1 list some characteristic properties of the robot. The load capacity
and the maximum tip velocity suffice for the application of the robot to laser
welding. The small repeatability of the Stäubli RX90 robot is the result of the
stiff design of the robot’s joints and links and is unsurpassed by any industrial
six-axis robots with comparable reach. The repeatability is the lower limit for
the tracking error that can be realised by ILC and thus the small repeatability
is beneficial for realising a small tracking error with ILC.

5.1.2 Controller

The motion of the Stäubli RX90 robot is controlled by the industrial CS8 con-
troller (Stäubli, 2003b). The controller consists of four layers; the path genera-
tion module, the motion controllers, the servo amplifiers and the safety module.
The safety module takes care of the communication with components for robot
safety such as emergency stops and motor breaks. The other layers and their
interconnections are schematically shown in figure 5.3. The servo amplifiers
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Figure 5.3: The layout of the CS8 controller

power the servo motors that actuate the joints of the robot. The torques ex-
erted by these servo motors are linearly related to the motor currents supplied
by the servo amplifiers. The servo amplifiers control the motor currents to the
current setpoints specified by the motion controllers. The motion controllers
compute these current setpoints to make the actual joint angle and the angular
velocity trace the setpoints specified by the path generation module. Besides
the setpoints for the joint angle and the angular velocity, the path-generation
module can specify a torque feedforward. Furthermore, the path generation
module takes care of the communication with the seam-tracking sensor and the
ILC algorithm (see also figure 5.1).

The CS8 controller contains an independent motion controller for each of
the six motors. Each motion controller consists of an interpolator, a feedback
controller and a feedforward controller. A schematic overview of the motion
controllers is given in figure 5.4. The interpolator computes position, velocity
and acceleration setpoints at a rate of 2 kHz from the position and velocity
setpoints that are specified by the path generation module at a rate of 250 Hz.
The position setpoints from the interpolator and the actual position and velocity
measured by the resolvers on the motor axes are the inputs for the feedback
controller. The feedback controller consists of a cascaded position and velocity
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Figure 5.4: Block diagram of the motion controllers of the CS8

loop, running at 2 kHz and 4 kHz respectively. The feedforward controller
computes a current feedforward and a velocity feedforward using the velocity
and acceleration setpoints from the interpolator and the torque feedforward
that is specified by the path generation module. The sum of the output of
the feedback controller and the current feedforward is the current setpoint for
the servo amplifier. The motion controllers are implemented on digital signal
processors (Kollmorgan, 2001). These digital signal processors, the hardware of
the safety module and the hardware of the servo amplifiers are integrated in a
single hardware module for each drive.

The path generation module specifies the position setpoints, the velocity
setpoints and the torque feedforwards for the motion controllers (see figure 5.3).
These setpoints are transferred to the motion controllers via a dedicated optical
bus at a rate of 250 Hz. Each motion controller returns the measured position
and velocity to the path generation module via the same bus. The software of the
path generation module runs on an industrial PC with the real-time VxWorks
operating system. Conventionally, the VAL3 software provided by Stäubli takes
care of the path generation. This software sets the torque feedforward to zero
and computes the position and velocity setpoints from the desired velocity and
points along the desired trajectory specified by the user. In this work the path
generation software developed by De Graaf (2007) is used. This software em-
ploys the Real Time Robot Controller Abstraction Layer (RTRCAL, Pertin and
Bonnet-des-Tuves (2004)), a C++ Application Programming Interface for com-
munication with the robot hardware. The software of De Graaf (2007) is used
instead of the VAL3 software, because it gives direct access to the setpoints for
the robot motion and it synchronises the measurements of the seam-tracking
sensor (see subsection 5.1.3) with the measured joint motion. Both features are
employed for the implementation of ILC in this work. The ILC algorithm uses
the synchronised measurements of the tip tracking error to update the reference
position for the tip at setpoint level (see figure 5.1).

In the first iteration of ILC the setpoints for the position and velocity of the
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robot joints, which are the input for the joint controllers, are computed from
the geometry of the seam and the desired velocity profile (see section 5.2) using
a kinematic model of the Stäubli RX90 robot (Corke, 1996). These setpoints
are transferred to the motion controller by the path-generation module. The
setpoints for the first iteration are referred to as the nominal setpoints here-
after. After the first iteration, the ILC algorithm specifies an update for the tip
position at setpoint level. The path generation module converts this update of
the setpoints for the tip position to an update of the setpoints for the joint angle
using the inverse of the local kinematic Jacobian (Corke, 1996). This Jacobian
relates infinitesimal motions of the joints to infinitesimal motions of the robot
tip. The update of the setpoints for the angular joint velocity are computed
from the update of the setpoints for the joint angle using a central difference
scheme.

The communication of the setpoints from the path-generator module to the
motion controllers and the measured joint motion from the motion controllers to
the path generator introduces two delays of 4 ms. In addition, the interpolator
in the motion controllers introduces a delay of 4 ms. Altogether, the delay
between the setpoints for the joint motion and the measured joint motion is three
samples. The path-generation module synchronises the sensor measurements
with the measurements of the joint motion, which means that the delay between
the setpoints for the tip position and the motion measured by the sensor is also
three samples.

5.1.3 Welding head with integrated seam-tracking sensor

The Stäubli RX90 robot carries a welding head with integrated seam-tracking
sensor. The welding head is used to focus a high-power laser beam to an intensity
that is sufficient for laser welding. Conventionally, the laser beam is transported
to the welding head via a glass-fiber, though for the experiments in this work the
delicate fiber is not connected. A Trumph welding head with a focal length of
150 mm is used. The welding head is equipped with an integrated seam-tracking
sensor (Falldorf, 2002) that measures the location of the weld seam with respect
to the welding head. The Close-To-Focus (CTF) sensor is used, which is able to
measure the location of the seam close to the focal point of the welding head.
A picture and a schematic drawing of the CTF sensor are shown in figure 5.5.
The sensor system consists of a laser diode, a CMOS camera and an industrial
PC. The laser diode projects a line on the product surface, perpendicular to
the weld seam. The camera records the light that is reflected by the product at
a known angle with respect to the laser diode. The recorded data are sent to
the industrial PC that computes the location of the seam from features in the
camera image.

The sensor measurements are triggered by the robot controller and the sen-
sor’s PC sends the measured seam location back to the robot controller (see
figure 5.1). The robot controller triggers the measurements at the same rate



5.1. System description 83

welding head

camera

laser diode

diode laser plane

weld seam

product

x′y′
z′

source: Falldorf Sensor

Figure 5.5: The Falldorf close-to-focus sensor

as the setpoints are supplied to the motion controller and compensates for the
delay between triggering and reception of the measured seam location. This
way, the sensor measurements are synchronised with the measured motion of
the robot’s joints. This synchronisation procedure is developed and described
in more detail by De Graaf (2007).

The location of the weld seam is measured with respect to the local Ox′y′z′

coordinate system of the sensor. This orthogonal coordinate system is oriented
with respect to the sensor as illustrated in figure 5.5; the z′-direction coincides
with focal line of the camera, the y′-direction is the perpendicular direction
in the diode laser plane and the x′-direction is perpendicular to the other two
axes. The focal line of the sensor’s camera coincides with the focal line of the
high-power laser. In this work the location of the weld seam is not measured
during welding and therefore the location of the seam can be measured at the
(virtual) focal point of the high-power laser beam. The origin of the sensor’s
coordinate system is put at this focal point such that the measured location of
the seam equals the tracking error. The location of the focal point is calibrated
with respect to the end-flange of the robot according to the procedure described
by De Graaf (2007).

The x′-direction of the sensor should be approximately parallel to the local
direction of the weld seam to obtain useful measurements. The camera detects
a projection of the intersection of the weld seam with the diode laser plan.
Figure 5.6 schematically shows the camera image of the CTF sensor and its
change as a result of a movement of the welding head in the different directions
above a straight overlap weld seam. Clearly, the y′- and z′-position of the point
of intersection of the seam and the diode laser plane can be extracted from the
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Figure 5.6: The camera image of the CTF sensor above a straight overlap weld
seam and the change of the image as a result of a movement of the welding head

camera image. The x′-position of this intersection is coupled to the z′-position
via the angle of the laser plane around y′-axis. A movement of the welding head
in the x′-direction does not result in a change of the camera image and thus
the x′-position along the weld-seam cannot be measured with the sensor. A
rotation of the welding head around the x′-axis changes the camera image and
thus the angle around the x′-axis can be extracted from the image. The angle
around the y′- and z′-axes cannot be detected. The resolution of the sensor
in the linear directions is determined by the optical components in the sensor,
the angle of the laser diode and the pixel-size of the camera. The resolution is
15 µm in the y′-direction and 26 µm in the z′-direction.

As a consequence of the small focal spot size and the small focal depth of the
high-power laser beam, the tracking error of the laser focus with respect to the
weld seam should be smaller than 0.1 mm in the y′- and z′-direction to obtain
defect free welds (Duley, 1998; Olde Benneker and Gales, 2007; Römer, 2002).
Small errors in the welding speed and the orientation of the welding head do not
significantly affect the weld quality. The focus of this work is thus on reducing
the tracking error in the y′- and z′-directions. It is assumed that the focal point
of the high-power laser beam should be placed on the seam. Since the origin
of the sensor’s coordinate system coincides with the location of the focal point,
the measured location of the weld seam in the y′- and z′-directions equals the
tracking error that should be reduced by ILC.

5.1.4 The implementation of the ILC algorithms

The ILC algorithms proposed in chapters 3 and 4 are used to reduce the tip
tracking errors measured by the sensor by updating the setpoints for the position
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of the robot’s tip (see figure 5.1). The ILC algorithms are implemented as
described in subsections 3.3.2 and 4.3.2 using the algorithms from appendix B.
These algorithms are implemented in MATLAB on a contemporary PC with
1.25 GB RAM and a processor running at 1.6 GHz.

In most literature on the application of ILC to robots (see section 2.3) the
ILC algorithm is used to update either the torque feedforward setpoints or the
position setpoints. In this work the position setpoints are updated, because this
has several advantages over updating the torque feedforward setpoints. Firstly,
although a torque feedforward can be specified for the motion controllers of the
CS8, this is not the case for all industrial controllers. Updating the position set-
points makes the proposed procedure more generally applicable. Secondly, the
relation between an update of the position setpoints and the resulting change
of the tracking error is approximately unity at low frequencies. This facili-
tates the modelling of the robot dynamics (see section 5.3) and the tuning of
the weights in the objective function for NILC (see subsection 6.2.1). Thirdly,
the feedback motion controller contains an integrating action. This integrat-
ing action counteracts a constant torque feedforward and thus a constant error
cannot be compensated by a constant torque feedforward. Moreover, a large
torque feedforward is needed to compensate for the low-frequency components
of the tracking error due to the integrating action. These disadvantages could
be overcome by switching off the integrator of the feedback controller, though
this is not in line with the requirements formulated in section 1.2.

Laser welding requires the compensation of the tracking errors of the welding
head in the y′ and z′ direction (see subsection 5.1.3). The tracking errors in
those directions are compensated with ILC by updating the setpoints for the
position of the welding head in the same directions. This update is converted to
an update of the setpoints for the joint angles by the path generation module
(see subsection 5.1.2). Expressing the tracking errors and the setpoint update
in the same coordinate system facilitates the modelling of the robot dynamics
(see section 5.3) and the tuning of weights in the objective function for NILC
(see subsection 6.2.1).

The delay between the setpoints for the joint motion and the motion mea-
sured by the sensor is three samples of 4 ms (see subsection 5.1.2). As a result
of the delay, the updated setpoints computed by the ILC algorithm cannot com-
pensate for the tracking error in the first three samples of the iteration. This is
resolved by commanding the robot to move to the updated initial position set-
point and wait for 0.5 s prior to each iteration. As a result, the robot is at rest
in the first four samples of each iteration and the (constant) tracking error in
those samples is compensated by the update of the first position setpoint. An-
other effect of the delay is that the last three position setpoints do not affect the
measured tracking error in the iteration. The optimal update of the setpoints
for these time-samples computed by the ILC algorithms is thus zero. This could
result in a discontinuity in the position setpoints and an undesired movement of
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the robot after the end of the iteration. This is resolved by holding the position
setpoints at the same value after the third last sample of each iteration.

5.2 Trajectory definition

The performance of the proposed ILC algorithms is tested for two weld-seam
geometries, which define trajectory A and B for the robot motion. Trajectory
A is specially designed to show the performance that can be realised with the
proposed ILC algorithms. Trajectory B is typical for laser welding tasks in
industry.

5.2.1 Trajectory A

The weld seam that defines trajectory A is formed by the serrated edge of a
metal strip that overlaps a second strip. These strips are depicted in figure 5.7
and the dimensions of the seam geometry are illustrated in figure 5.8.

The profile is placed in the xy-plane of the Oxyz coordinate system (see
section 5.1.1) at z = −368 mm with its base-line oriented in the x-direction.
The nominal setpoints for the robot motion are defined such that the focus
point of the welding head moves along the base-line of the profile, starting at
(x, y, z) = (350, 0,−368) mm and ending at (x, y, z) = (850, 0,−368) mm. The
xy-components of these setpoints are shown in figure 5.9. The nominal setpoints
for the orientation of the welding head are defined such that the sensor’s Ox′y′z′
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Figure 5.7: The weld seam defining trajectory A
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Figure 5.8: The dimensions of the weld seam defining trajectory A

coordinate system is kept aligned with the global Oxyz coordinate system. The
velocity profile, depicted in figure 5.10, is trapezoidal with a maximum velocity
of 400 mm/s and an acceleration of 1600 mm/s2. The nominal setpoints for
the joint angles are computed from the nominal setpoints for the position and
orientation of the welding head and the velocity profile using a kinematic model
of the Stäubli RX90 robot (Corke, 1996). The nominal setpoints for the joint
angles are depicted in figure 5.11. The robot configuration changes from almost
fully retracted at the start to almost fully stretched at the end of the trajectory,
which can be seen from the significant change of the angles of joints 2, 3 and 6
along the trajectory. Figure 5.12 shows pictures of the change of configuration
of the Stäubli RX90 robot along trajectory A.
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(a) Side view (robot at end point) (b) Top view (robot at start point)
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Figure 5.12: The robot movement along trajectory A

The location of the seam with respect to the nominal trajectory of the weld-
ing head is measured with the sensor by commanding the robot to move along
the trajectory at 50 mm/s. At this low speed geometrical effects dominate the
tracking error. Figure 5.9 shows the measured location of the seam, which is
obtained by adding the measured tracking error in the y′-direction to the nom-
inal position setpoints for the welding head. The serrated profile of the seam is
clearly visible in the figure. Next, the location of the seam is measured while
the robot is commanded to move along the trajectory at nominal velocity. The
measured tracking error at nominal speed, which is referred to as the nomi-
nal tracking error, should be reduced by the application of ILC. Figure 5.13
shows the nominal tracking error in the y′ and z′-direction for the motions at
50 mm/s and 400 mm/s. In both cases the serrated profile of the seam is visible
in the y′-direction of the tracking error and a trend is visible in the z′-direction
of the tracking error. The trend is the result of either a misalignment of the
metal strips or a deflection of the robot mechanism due to gravity forces while it
stretches. The difference between the tracking error at 50 mm/s and 400 mm/s
is the result of dynamic effects. The most notable difference is the error in the
z′-direction at the end of the motion. Apparently the robot cannot keep the
welding head at the commanded height during the (high) deceleration. Another
difference is that the y′-component of the error for 400 mm/s lags the error for
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Figure 5.13: The nominal tracking error along trajectory A

50 mm/s. Probably the robot lags the commanded position in the x′-direction
for a velocity of 400 mm/s. This tracking error is not compensated by the ap-
plication of ILC as the tracking error in the x′-direction cannot be measured
with the seam-tracking sensor.

Realising high-accuracy motion along trajectory A is challenging for two rea-
sons. Firstly, during the motion along this trajectory the configuration of the
robot changes from almost fully retracted to almost fully stretched. In subsec-
tion 5.3.5 it is shown that this results in a considerable change of the dynamics
of the robot. The ILC algorithm should be able to cope with these varying dy-
namics. Secondly, the combination of the high velocity and the serrated profile
results in a nominal tracking error with considerable high-frequency compo-
nents. In subsection 6.2.3 it is shown that the required tracking accuracy can
only be realised if the frequency components of the tracking error beyond the
first resonance frequency of the robot mechanism are compensated by the ILC
algorithm.
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5.2.2 Trajectory B

The weld seam that defines trajectory B is formed by the edge along the junc-
tion of two hydroformed tubes as depicted in figure 5.14. The hydroformed
tubes constitute a conceptual design for the A-pillar and sill of a Land Rover
Freelander car. The design is the result of a study of Corus on the application
of hydroformed tubes in automotive (see also Van Tienhoven, 2008). Two of
the four sides of the junction are welded. The dimensions of the seam geometry
are illustrated in figure 5.15.

The seam is placed in the xy-plane of the Oxyz coordinate system (see sec-
tion 5.1.1) at z = −242 mm. The nominal setpoints for the robot motion are
defined such that the focus point of the welding head moves along the seam. The
xy-components of these setpoints are shown in figure 5.16. The nominal set-
points for the orientation of the welding head are defined such that the sensor’s
x′-direction is aligned with the local direction of the seam and the z′-direction
is kept at an angle of 29 degrees with respect to the global z-direction, which
is needed to be able to access the seam. The velocity profile, depicted in fig-
ure 5.17, is trapezoidal with a maximum velocity of 50 mm/s and an acceleration
of 100 mm/s2. The nominal setpoints for the joint angles are computed from
the nominal setpoints for the position and orientation of the welding head and
the velocity profile using a kinematic model of the Stäubli RX90 robot (Corke,
1996). The nominal setpoints for the joint angles are depicted in figure 5.18.
Note that the tracking of the small radius of the circular part of the trajec-
tory requires high joint velocities and accelerations. The configuration of the
Stäubli RX90 robot along trajectory B is shown in figure 5.19.

The location of the seam with respect to the nominal setpoints for the po-
sition of the welding head is measured with the sensor by commanding the

sill

A-pillar

seam
x

y

z

(the arrows indicate the directions of Oxyz, not the origin)

Figure 5.14: The weld seam defining trajectory B
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73.6 mm

55.9 mm 95.1 grad

R 15 mm

Figure 5.15: The dimensions of the weld seam defining trajectory B

robot to move along the trajectory at 10 mm/s. At this low speed geometrical
effects dominate the tracking error. Figure 5.16 shows the measured location
of the seam, which is obtained by adding the measured tracking error in the
y′-direction to the nominal position setpoints for the welding head. The small
constant deviation is the result of a misalignment of the seam with respect to the
nominal trajectory. Next, the location of the seam with respect to the welding
head is measured while the robot is commanded to move along the trajectory
at nominal velocity. The measured tracking error at nominal speed, which is
referred to as the nominal tracking error, should be reduced by the application
of ILC. Figure 5.20 shows the measured tracking error in the y′ and z′-direction
for 10 mm/s and 50 mm/s. The constant error due to the misalignment in the
y′-direction is also visible for 50 mm/s. The difference between the tracking
error at 10 mm/s and 50 mm/s is caused by dynamic effects. The most no-
table effect of the dynamics is the large tracking error in the circular part of
the trajectory where the velocities and accelerations are high. Moreover, the
acceleration at the start of the trajectory results in a small error.

The geometry of trajectory B is typical for weld seam trajectories in indus-
try, which often consist of straight sections interconnected with circular parts.
The tracking errors along such trajectories are mostly similar to the tracking
errors along trajectory B, i.e., constant errors due to misalignment, errors dur-
ing acceleration an deceleration and errors along circular sections due to the
centripetal acceleration. The ability to compensate the tracking errors along
trajectory B is thus illustrative for the potential benefit of the application of
ILC for many industrial applications.
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(a) Side view (robot at start point) (b) Top view (robot at start point)

(c) Robot at start point (d) Robot at mid point (e) Robot at end point

Figure 5.19: Robot movement along trajectory B
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5.3 Dynamic modelling

5.3.1 Introduction

A model of the dynamics of the robot system is required for the implementation
of the NILC and RILC algorithms proposed in chapters 3 and 4 respectively.
The model should describe the dynamic response of the tracking error that
should be reduced to the feedforward input signal that is updated by ILC. As
discussed in subsection 5.1.4, the tracking error measured by the seam-tracking
sensor in the y′ and z′-direction should be reduced by updating the setpoints
for the position of the welding head in those directions. The model should thus
describe the dynamic response of the measured tracking error to the setpoints
for the position of the welding head. These dynamics are the result of the
dynamics of the robot mechanism and the controller.

Several methods are proposed in literature to model the dynamics of an
industrial robot based on physical considerations. These models are able to de-
scribe the robot dynamics along any feasible trajectory. Waiboer (2007) devel-
oped such model for the Stäubli RX90 robot system. The dynamics of the robot
mechanism have been modelled using a non-linear finite element formulation.
This formulation describes the effect of the inertia of the links, the rotational
inertia of the driving system and the gravitation compensation spring of the
robot. Moreover, the friction in the driving system is modelled with a detailed
friction model, which is based on insights from tribological models. Parame-
ters of the model are identified from experimental data. A detailed dynamic
model of the controller dynamics is obtained from data of the manufacturer.
The resulting model accurately predicts the low-frequency components of the
joint torques and the tracking error of the Stäubli RX90 robot. However, the
model is not able to predict the tracking error beyond the bandwidth of the
robot system. At these frequencies the dynamics of the robot are significantly
affected by flexibilities in the mechanism, which are not included in the model of
Waiboer (2007). Hardeman (2008) has shown that the dominant flexibilities in
the mechanism of the Stäubli RX90 robot are the flexibilities in the driving and
bending direction of the joints and proposes an extension of the finite element
model to include these flexibilities. The identification of all stiffness and inertia
parameters of such physically parameterised robot model including flexibilities
is addressed by Hardeman (2008); Tjepkema (2008); Wernholt and Gunnarsson
(2006), but the research has not resulted in a method for the identification of
all model parameters so far. Thus, currently no model of the robot dynamics is
available that is based on physical considerations and that is able to describe the
robot dynamics along any feasible trajectory at frequencies beyond the band-
width of the robot system. The development of such model is recommended for
future research, but it is not the main focus of this work.

The robot model that is used in this thesis is not based on physical con-
siderations, but suffices to demonstrate the effectiveness of ILC for realising
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high-accuracy motion. A model structure is adopted that is able to describe
the multidimensional, configuration dependent robot dynamics, including the
high-frequency dynamics resulting from flexibilities in the robot manipulator.
The parameters of this so-called black box model are estimated from measure-
ments of the dynamic response of the robot along a specific trajectory. The
resulting model is only suited to describe the dynamic response of the robot
near this trajectory. The model structure is described in subsection 5.3.2 and
the procedure for identification of the model parameters is proposed in subsec-
tion 5.3.3. This identification procedure is used to model the dynamics of the
Stäubli RX90 robot along the trajectories from section 5.2. The data acquisi-
tion is described in subsection 5.3.4 and the resulting models are presented in
subsection 5.3.5. Finally, in subsection 5.3.6, the uncertainty in the modelled
dynamics is specified. This specification of the model uncertainty is needed for
the implementation of RILC.

5.3.2 Model Structure

The black-box model structure should be able to describe the multidimensional
configuration dependent dynamics of the Stäubli RX90 robot system. An ex-
tensive study on black-box models and the identification of their parameters is
published by Ljung (1999). The Auto-Regressive model with eXogenous inputs
(ARX-model) is suited for the description of time-invariant multidimensional
dynamics and the model structure has the advantageous property that its pa-
rameters can be estimated efficiently using linear regression. In this work, the
ARX-model structure is extended with time-varying parameters to be able to
describe the configuration dependent robot dynamics. The model is denoted
as the Time-Varying Auto-Regressive model with eXogenous inputs (TVARX-
model). Previously, a similar model structure was used by Fujimori et al. (2004)
to model the dynamics of a robot manipulator for the design of a gain-scheduled
feedback controller and by Petsounis and Fassois (2000) to analyse the non-
stationary vibrations at the end-effector of a flexible planar manipulator as a
result of stationary torque vibrations at the joints.

The input-output relation of the TVARX-model is described by the following
equations

¯̄xk
i =

Na
∑

j=1

¯̄Aj,i ¯̄x
k
i−j +

Nb+Nc−1
∑

j=Nc

¯̄Bj,if
k
i−j + vk

i , (5.1)

ek
i = ¯̄xk

i + di, (5.2)

where ek
i is the error that should be compensated with ILC, fk

i the feedfor-
ward that is updated by ILC, ¯̄xi is a state-variable, di represents the effect
of iteration-invariant disturbances and vi the effect of a stochastic (iteration-
varying) disturbances. Matrices { ¯̄Aj,i,

¯̄Bj,i} are time-varying matrices and de-
scribe the dynamics of the system. Parameters Na and Nb describe the order
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of the system and parameter Nc denotes the number of delays of the model.
The effect of iteration-varying disturbances vi is assumed to be white for the
estimation of the model parameters. The consequence of this assumption for
the parameter estimation is discussed at the end of subsection 5.3.3.

The proposed model structure is used to construct three models of the robot
dynamics:

• Model 1 describes the dynamics of the robot system below its bandwidth,
where the output perfectly tracks the input with a fixed delay, but ignores
the high-frequency dynamics. This model is realised by taking Na = 0,
Nb = 1, ¯̄BNc,i = I.

• Model 2 describes the dynamics of the robot system including its high-
frequency dynamics, but ignores the variation along the trajectory. This
model is realised by taking the same matrices { ¯̄Aj,i,

¯̄Bj,i} for all i and
estimating these matrices from measurement data.

• Model 3 describes the dynamics of the robot system including the high-
frequency dynamics and the (slow) variation along the trajectory. This
model is realised by piece-wise linear variation of the components of ma-
trices { ¯̄Aj,i,

¯̄Bj,i} and estimating these matrices from measurement data.

The reduction of the tracking error with ILC is tested for all three models. The
experimental results are described in chapter 6. Those results show the effect
of the model complexity on the achievable reduction of the error. In particular,
the results for model 3 show the benefit of an LTV dynamic model and an
ILC algorithm that is able to cope with LTV dynamics for the reduction of the
tracking error.

The components of matrices { ¯̄Aj,i,
¯̄Bj,i} for models 2 and 3 are estimated

by means of identification. The number of parameters for the time-invariant
model 2 equals Ne × (Ne ×Na +Nf ×Nb), where Ne is the dimension of er-
ror ek

i and Nf is the dimension of feedforward fk
i . The number of parameters

for the time-varying model 3 would be Ne × (Ne ×Na +Nf ×Nb)×Ni if the
parameter values at different time-instances were taken independent. The num-
ber of parameters that needs to be estimated is reduced by approximating the
slow variation of the parameters along the trajectory as piece-wise linear with
respect to some predefined time-dependent interpolation parameter ξi. Using
this predefined interpolation parameter, the parameters of the model can still
be estimated from linear regression. The piece-wise linear interpolation of the
matrices of the model is expressed by

¯̄Aj,i =

Nn
∑

n=1

ψn,i
¯̄Aj,n, (5.3)

¯̄Bj,i =

Nn
∑

n=1

ψn,i
¯̄Bj,n, (5.4)
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where ψn,i is defined as

ψn,i =







2− n+ ξi if n− 2 < ξi ≤ n− 1,
n− ξi if n− 1 < ξi < n,
0 else.

(5.5)

The interpolation parameter ξi is taken proportional to the distance along the
trajectory and scaled such that it is equal to zero at the start of the trajectory
and equal to Nn − 1 at the end. The use of the piece-wise linear interpolation re-
duces the number of unknown parameters to Ne × (Ne ×Na +Nf ×Nb)×Nn.
The estimation of these unknown parameters is discussed in subsection 5.3.3.

The efficient implementations of NILC and RILC, proposed in subsec-
tions 3.3.2 and 4.3.2 respectively, are based on the state-space equations (3.1).
Such state-space equations are obtained from the TVARX model by the follow-
ing transformation

xk
i+1 =













¯̄xk
i+1

∑No

j=2

(

¯̄Aj,i+2 ¯̄xk
i+2−j + ¯̄Bj,i+2f

k
i+2−j

)

...
¯̄ANo,i+No

¯̄xk
i + ¯̄BNo,i+No

fk
i













, (5.6a)

Ai =



















¯̄A1,i+1 I O . . . O

¯̄A2,i+2 O I
. . . O

¯̄A3,i+3 O O
. . . O

...
...

. . .
. . .

. . .
¯̄ANo,i+No

O O . . . O



















, (5.6b)

Bi =

















¯̄B1,i+1
¯̄B2,i+2
¯̄B3,i+3

...
¯̄BNo,i+No

















, (5.6c)

Ci =
[

I O O . . . O
]

(5.6d)

where No = max(Na, Nb +Nc) and ¯̄Aj,i = O for j > Na and ¯̄Bj,i = O for
j < Nc and j > Nb +Nc − 1. Note that the state-space matrices at time-
instance i depend on matrices { ¯̄Aj,i,

¯̄Bj,i} of the TVARX model at multiple
future time instances.
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As described in subsection 5.1.4, the Stäubli RX90 robot is commanded to
move to the initial position setpoint of the iteration and to wait for 0.5 s prior
to each movement along the trajectory. As a result, the Stäubli RX90 robot is
in its steady-state at the updated initial position setpoint at the start of each
movement. This is modelled by using the following equation for the initial state

xk+1
1 = (I −A1)

−1
B1f

k+1
1 . (5.7)

5.3.3 Parameter identification procedure

In the previous subsection a model structure is proposed to describe the config-
uration dependent dynamics of the Stäubli RX90 robot. The proposed model
structures is used to construct three models, where the parameters of models
2 and 3 are estimated from experimental data. The estimation procedure is
described in this subsection.

The components of { ¯̄Aj,n,
¯̄Bj,n} are estimated from measurement data by

means of parameter identification. Measurements of the response of the tracking
error to a set of broadband excitations of the feedforward input are used for the
identification. Moreover, the tracking error is measured for zero feedforward
to compensate for the trial-invariant disturbance di. A superscript is used to
denote the measurement series, where 0 refers to the measurement in which
the feedforward input is set to zero. The acquisition of the measurement data
is described in subsection 5.3.4. The parameter estimates are obtained from
the minimisation of the prediction error, which is the difference between the
measured error and the model-based prediction of the error. The model-based
prediction of the error is defined as

êk
i = ¯̄xk

i − ¯̄x0
i + e0i = e0i +

Na
∑

j=1

Nn
∑

n=1

ψn,i
¯̄Aj,n

(

ek
i−j − e0i−j

)

+

Nb+Nc−1
∑

j=Nc

Nn
∑

n=1

ψn,i
¯̄Bj,n

(

fk
i−j − f0

i−j

)

, (5.8)

where the contribution of the stochastic disturbances vk
i and v0

i , which are
assumed to be white, is set to zero. Note that the model based prediction is
based on measurements of the error and the feedforward in previous time-steps
and in iteration 0.
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Stacking the model-based prediction of the error for Nk measurement series
of length Ni gives
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. (5.9)

The parameter estimate is obtained from minimising the difference between this
vector of the model-based predictions of the error and the vector of the mea-
surements of the error. The right-hand side of equation (5.9) is affine in the
unknown { ¯̄An,i,

¯̄Bn,i} and thus the minimising parameters can be computed
efficiently from linear regression. This efficient estimation procedure of the pa-
rameters is the main advantage of using the proposed TVARX model structure.

The effect of the stochastic disturbance vk
i , which is assumed to be white,

on the output of the TVARX model is coloured by the dynamics of the model.
It is observed that the effect of stochastic disturbances on the tracking error of
the Stäubli RX90 robot is also not white, but coloured by the robot dynamics.
However, it is not verified if the effect of the stochastic disturbances can be
correctly represented by a white noise source affecting the dynamics as vk

i in
equation (5.2). If this assumption is not correct, then the estimation proce-
dure could result in a biased estimate of the parameters of the TVARX model.
A conventional time-invariant ARX model has the same disadvantage, which is
analysed in detail by Ljung (1999). Despite the fact that the proposed identifica-
tion procedure could result in a biased estimate of the parameters, the TVARX
model structure is used in this work because of the computational efficiency of
the parameter estimation.
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5.3.4 Data acquisition

Measurement of the response of the error to a set of broadband excitations of
the feedforward input are required for the estimation of the parameters of model
structure from subsection 5.3.2 using the identification procedure from subsec-
tion 5.3.3. As described in subsection 5.1.4 the tracking error of the welding
head in the y′ and z′-direction is considered as the output of the system and the
update of the position setpoints in those directions is the input manipulated by
ILC.

Ten different multisine realisations are used for the excitation of the feed-
forward input. Each multisine realisation consists of all frequency components
between 1 Hz and 125 Hz of which an integer number of periods fit within the
length of the iteration. The amplitudes of the frequency components up to
5 Hz are taken equal and the amplitudes of frequency components beyond 5 Hz
decrease quadratically with the frequency. The phase of the frequency compo-
nents are selected randomly and a different set of randomly selected phases is
used for each of the multisine realisations. The first 50 samples and the last 50
samples of each multisine realisation are windowed to prevent discontinuities in
the setpoints for the robot at the start and end of the iteration. The maximum
absolute value of each multisine realisation is scaled to 1 mm to keep the weld
seam within the range of the sensor.

The tracking error is measured in 10 series of 3 runs. For each series a
different multisine realisation is used. In run 1 the feedforward input is set to
zero and thus the tracking error for the nominal trajectory is measured. In runs 2
and 3 the y′ and z′ component of the feedforward input are excited respectively.
The difference between the tracking error that is measured with and without
the excitation is referred to as the output and the multisine excitation is referred
to as the input hereafter.

Figures 5.21 and 5.22 show the input and the output in one of the measure-
ment series for trajectories A and B respectively. Clearly, the low-frequency
components of the input are traced by the output and the response to the
low-frequency components of the input is decoupled. The high-frequency com-
ponents of the input are amplified in the output and the response to the high-
frequency components is coupled.

5.3.5 Estimated dynamic models

The dynamics of the robot in the vicinity of the trajectories described in sec-
tion 5.2 are modelled using the TVARX model structure from subsection 5.3.2.
As described in that subsection three different models are constructed using the
TVARX model structure; The output of model 1 exactly traces the setpoints
with a fixed delay, model 2 is a time-invariant model estimated from measure-
ment data and model 3 is a time-varying model estimated from measurement
data. The delay between the setpoints for the position of the welding head
and the motion measured by the sensor is three samples (see subsection 5.1.2)
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Figure 5.21: Response of the tracking error (output) to a multisine excitation
added to the setpoints (input) for trajectory A
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and thus Nc = 3 is taken for all three model. The parameters of models 2 and
3 are estimated using the identification procedure from subsection 5.3.3 with
the measurement data described in subsection 5.3.4. The measurement data is
split in two sets; the data from measurement series 1-5 are used for the estima-
tion of the models and the data from measurement series 6-10 are used for the
validation of the models. The parameters of 512 models are estimated using
Na = 1 . . . 8, Nb = 1 . . . 8 and Nn = 1 . . . 8. The selection of the parameters Na,
Nb and Nn is based on the difference between the output that is measured in
series 6-10 and the data that is simulated for the 512 models. The difference
between the measured and simulated data is referred to as the simulation error.
For the tested ranges of Na, Nb and Nn, it is found that the larger the number of
parameters, the smaller the norm of the simulation error in measurement series
6-10 for both trajectories. The best proper model with Nn = 1 is selected for
model 2, i.e., {Na, Nb, Nn} = {8, 7, 1}, and the best proper model is selected for
model 3, i.e., {Na, Nb, Nn} = {8, 7, 8}. This selection of {Na, Nb, Nn} is used
for trajectories A and B.

Figures 5.23 and 5.24 show the simulation error of the three models for the
measurement series of which the input and output data are shown in figures 5.21
and 5.22. Clearly, the simulation error of model 1 is larger than the simulation
error of model 2, which is in turn larger than the simulation error of model
3. Models 2 and 3, which are based on identification, thus describe the robot
dynamics better than model 1, which assumes perfect tracking of the setpoints.
Moreover, the dynamics of the robot can be described better using the time-
varying model 3 than using the time-invariant model 2. The difference between
the simulation error of the time-invariant model 2 and time-varying model 3 is
largest for trajectory A, because the large change of configuration of the robot
along this trajectory results in a considerable variation of the dynamics. The
simulation errors for measurement series 1-10 are used in subsection 5.3.6 for
the specification of the model uncertainty.

The dynamics of models 1 and 2 are characterised by their frequency re-
sponse. Model 3 does not have a unique frequency response as its dynamics are
time-varying. For comparison of model 3 with the others, the local frequency
response is used, which is the frequency response of the state-space matrices of
model 3 at a single time-step. Figures 5.25 and 5.26 show the frequency response
of models 1 and 2 and the local frequency response of model 3 at the mid-point
of both trajectories. Figures 5.27 and 5.28 show the local frequency responses
of model 3 at the start, mid and end point of both trajectories. Hereafter, these
frequency responses are discussed in relation to the dynamic behaviour of the
robot system. The output of the robot system traces the low-frequency compo-
nents of the feedforward input due to the high gain of the feedback controller
below its bandwidth. This is modelled by the frequency responses of all three
models, which are all approximately unity up to 5 Hz. The gain of the feed-
back controller rolls off at the bandwidth. This roll-off and the related phase
behaviour of the feedback controller cause a peak in the frequency response.
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Figure 5.23: Difference between the measured and the simulated response of the
error to a multisine excitation added to the setpoints for trajectory A
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Figure 5.24: Difference between the measured and the simulated response of the
error to a multisine excitation added to the setpoints for trajectory B



5.3. Dynamic modelling 109

This is modelled by the frequency responses of models 2 and 3, which peak
around 10 Hz. Beyond the closed-loop bandwidth the dynamics of the robot
system depend on the high-frequency dynamics of the controller and the mech-
anism. The high-frequency dynamics of the controller are dominated by the
velocity and acceleration feedforward of the motion controllers in the CS8. As
a result of these feedforwards, the frequency response of the robot system does
not roll-off at high-frequencies. This is modelled by the frequency responses
of models 2 and 3, which do not roll off beyond 10 Hz. The flexibilities in
the robot mechanism induce high-frequency resonance vibrations. These reso-
nance vibrations and the lack of roll-off of the controller result in peaks in the
closed-loop frequency response at high-frequencies. Those peaks are the cause
of the amplification of the high-frequency components of the multisine excita-
tion observed in figures 5.21 and 5.22. The resonance peaks are modelled by the
frequency response of models 2 and 3. The closed-loop bandwidth and the res-
onance frequencies of the mechanism depend on the configuration of the robot.
The local frequency response of the robot thus changes along a trajectory. The
configuration dependency of the frequency response is only described by model
3. As a result of the large change of configuration of the robot along trajectory
A, the dynamics of model 3 change the most along this trajectory. Note that
the variation of the bandwidth even introduces a phase-difference of more than
90 degrees in the local frequency response for 13.5 Hz at the start and end of
trajectory A.

From the previous it is concluded that model 1 only describes the dynamics
of the robot system up to the resonance frequency, while models 2 and 3 also
describe the dynamics beyond the resonance frequency. Furthermore, the vari-
ation of the dynamics of the robot, which is the largest along trajectory A, is
only described by model 3. As mentioned before, the reduction of the tracking
error of the Stäubli RX90 robot with ILC is tested for all three models. The
experimental results, which are presented in chapter 6, thus show the effect of
the difference in model quality on the achievable reduction of the tracking error.
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Figure 5.25: Frequency responses of models 1-2 and the local frequency response
of model 3 at the mid point of trajectory A
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Figure 5.26: Frequency responses of models 1-2 and the local frequency response
of model 3 at the mid point of trajectory B
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Figure 5.27: Local frequency responses of model 3 at three points along trajec-
tory A
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5.3.6 Model uncertainty

In the previous subsections models of the dynamics of the Stäubli RX90 robot
are constructed. Besides these models, a specification of their uncertainty is
required for the implementation of the RILC algorithm from chapter 4.

Like the modelling of the robot dynamics, the specification of the uncertainty
is not the main focus of this work. A heuristic procedure is adopted to specify
the model uncertainty, which suffices to show the potential effectiveness of RILC
as a method to improve the tracking of an industrial robot. The development
of a better founded approach for the specification of the model uncertainty is
recommended for future research.

Method

The specification of the model uncertainty for each of the three models is de-
rived from an estimation of the additive model error. The additive model error
is estimated from the relation between the feedforward and the simulation er-
ror. This simulation error is the difference between output that is measured
and the output that is simulated with the models and thus specifies the part
of the measured output that is not predicted by the models. The simulation
error is computed for all three models using the measurement data from the 10
measurement series described in subsection 5.3.4. These measurement data are
also used for the identification of the model parameters in subsection 5.3.5.

For simplicity, it is assumed that the additive model error is linear time-
invariant, such that its estimation can be based on frequency domain analysis.
The Fourier transform of the simulation error is divided by the Fourier trans-
form of the feedforward to obtain an estimate of the transfer function of the
additive model error for each of the measurement series. The gain of the trans-
fer functions for the 10 measurement series is averaged to reduce the variance
of the estimate. Subsequently, an estimate of the gain of the additive model
error is obtained by manually fitting a transfer function through the average
gain of the transfer functions. The pole locations of the transfer function are
set by multiplication of Butterworth filters with manually selected order and
cutoff frequency. The zero locations are set by multiplication with the inverse
of Butterworth filters with a manually selected order and cut-off frequency.

Results

The measured, the averaged and the fitted transfer functions of the additive
model error are depicted in figures 5.29-5.31. The fitted transfer function of the
additive model error is used to specify the additive model uncertainty. Below
the bandwidth of the robot system, where the system traces the setpoints with
three delays, the estimated uncertainty is small for all models. The uncertainty
of model 1 peaks at the bandwidth for both trajectories. These peaks are
caused by the fact that model 1 does not describe the peak in the frequency
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Figure 5.29: Transfer function of the additive model error of model 1
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Figure 5.30: Transfer function of the additive model error of model 2
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Figure 5.31: Transfer function of the additive model error of model 3
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response of the robot system at the bandwidth (see subsection 5.3.5). The model
uncertainty of model 2 peaks only for trajectory A, because the time-invariant
model does not describe the large variation of the system’s bandwidth along
this trajectory. The model uncertainty of model 3 increases at the bandwidth,
but it does not peak. The uncertainty of all models is large at high frequencies.
This is partly the result of the limited order of the models, by which they
cannot describe the high-order dynamic behaviour of the robot system at high-
frequencies resulting from the mechanical resonance frequencies. On the other
hand, the large uncertainty at high frequencies is the result of the effect of
stochastic (iteration-varying) noise on the measurement of the tracking error.
The amplitudes of the high-frequency components of the multisine excitation
are small and the resulting high-frequency components of the output are small
as well. The small effect of the excitation on the output is outmeasured by the
effect of stochastic noise, resulting in a relatively large simulation error, which
is used for the estimation of the uncertainty. The stochastic noise is not part of
the system dynamics and thus the estimation procedure results in a conservative
specification of the additive model error and thus the model uncertainty at high-
frequencies.

Selection of the uncertainty weighting filters

The selection of the uncertainty weighting filters is based on the previously
described estimate of the model uncertainty and the guidelines given in subsec-
tion 4.4.3.

In line with those guidelines a dynamic pre-weighting filter M and a static
post-weighting filter N are taken. The dynamics of the pre-weighting filter are
obtained from the estimate of the model uncertainty.

The uncertainty in the modelled relations between the two directions of the
feedforward and the two directions of the error are assumed to be independent.
This assumption is accounted for by taking a filter pre-weighting filter M with
Nf = 2 inputs and Nf ×Ne = 4 outputs, where the effect of each of the feed-
forward components on each of the error components is an output of M , and
taking a post-weighting filter N with Nf ×Ne = 4 inputs and Ne = 2 outputs,
which adds the effect of all feedforward components on each of the error compo-
nents. The dimension of the input and the output of the normalised uncertainty
matrix is thus Nf ×Ne = 4.

The uncertainty weighting filters are scaled as in equation (4.2) such that
the spectral norm of the post-weighting filter N is β. The value of the weight
ratio β can be used to tune the performance of RILC.

Discussion

The selected uncertainty weighting matrices result in a conservative specification
of the uncertainty. Firstly, this is the result of using the difference between the
measured and the simulated error for the estimation of the model uncertainty,
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while this difference is not only the result of the model error, but also the
effect of stochastic noise. Secondly, the modelled relations between the two
directions of the feedforward and the two directions of the error are assumed to
be independent, while probably some dependency is present in the components
of the additive model error. Besides its conservativeness, the specified model
uncertainty is time-invariant, while the additive error in the model of the non-
linear robot dynamics probably varies along the trajectory, which could lead to
an incorrect specification of the model uncertainty. It is recommended to address
the aforementioned issues in future research to obtain a better specification of
the uncertainty in the model of an industrial robot.
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Chapter 6

Experimental results

This chapter presents the experimental results from the application of the ILC
algorithms from chapters 3 and 4 to the Stäubli RX90 robot, which is described
in chapter 5. These experimental results demonstrate the performance of the
developed ILC algorithms in relation to the requirements formulated in sec-
tion 1.2.

Section 6.1 describes the experimental procedure. The selection of the pa-
rameters of the ILC algorithms for the experiments is discussed in section 6.2.
The results from the experiments are presented in section 6.3 and discussed in
relation to the objectives of the thesis in section 6.4. Finally, in section 6.5, the
effect of the improved tracking accuracy on the weld quality is demonstrated.

6.1 Experimental procedure

The main objective formulated in section 1.2 is the development of ILC algo-
rithms for realising high-accuracy motion at the tip of an industrial robot. The
ability of the ILC algorithms developed in chapters 3 and 4 to meet this re-
quirement is tested experimentally by reducing the tracking error at the tip of
the Stäubli RX90 robot, which is measured by the sensor described in subsec-
tion 5.1.3. This tracking error should be reduced to 0.1 mm to enable the use of
this robot for laser welding. The reduction of the tracking error is tested for the
two the trajectories described in section 5.2. Trajectory A is specially designed
to show the performance that can be realised with the proposed ILC algorithms.
Trajectory B is typical for laser welding tasks in industry. In section 1.2 it is
argued that an ILC algorithm should be able to cope with configuration depen-
dent dynamics to reduce the high-frequency components of the tracking error at
the robot tip. In this work the non-linear configuration dependent dynamics are
approximated as LTV for the small deviations from the repetitively traced tra-
jectory and ILC algorithms for LTV dynamics are developed. The necessity for
being able to cope with the configuration dependent dynamics is demonstrated
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by comparing the reduction of the tracking error by ILC for the LTI models 1
and 2 and the LTV model 3 (see section 5.3).

The reduction of the tracking error should be realised under several con-
straints resulting from practical considerations. Those constraints result in sev-
eral additional requirements on the ILC algorithm as discussed in section 1.2.
Firstly, the tracking error should converge monotonically in a limited number of
iterations. From the convergence analyses in sections 3.4 and 4.4 it is concluded
that the convergence rate depends on the selection of the parameters for the ILC
algorithms. This dependence is demonstrated by repeating the experiments for
several different parameter settings. The selection of the parameters is discussed
in more detail in section 6.2. The actual convergence rate is demonstrated by
the experimental results presented in section 6.3. Secondly, the ILC algorithm
should be computationally efficient. The computational efficiency is demon-
strated by a record of the computation time and memory that is required by
the algorithms for the experiments. Thirdly, the ILC algorithms should not in-
troduce any feedback action or require a modification of the standard industrial
feedback controller. This condition is satisfied as the proposed ILC algorithms
do not use measurements of the tracking error from the current iteration for
the computation of the feedforward and the ILC algorithms update the posi-
tion setpoints for the controller such that the standard motion controllers of the
industrial CS8 controller can be used (see subsection 5.1.4).

The ILC algorithms are applied according to the following procedure:

1. The nominal setpoints for the position and velocity of the robot joints are
computed as described in section 5.2.

2. The model of the dynamics of the robot system is constructed as de-
scribed in section 5.3. In addition, the uncertainty in the dynamic model
is specified according to the procedure described in subsection 5.3.6 for
the implementation of RILC.

3. The robustness filter and the parameters of the ILC algorithms are selected
as described in section 6.2.

4. The non-stationary Riccati difference equation is solved. The Riccati dif-
ference equation is the first step of the computation scheme for NILC
described in section B.1 and the second step of the computation scheme
for RILC described in section B.2.

5. The robot controller is commanded to move the robot along the trajectory
setpoints and to record the tracking error measured by the seam-tracking
sensor.

6. The trajectory setpoints are updated by the ILC algorithm as described in
subsection 5.1.4. The NILC algorithm from chapter 3 is implemented as
described in subsection 3.3.2 using the algorithm from section B.1. The
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RILC algorithm from chapter 4 is implemented as described in subsec-
tion 4.3.2 using the algorithm from section B.2.

7. Steps 5 and 6 are repeated 10 times.

For the evaluation of the computational efficiency of the algorithms, the time
to compute the time-varying Riccati matrix and the memory to store this ma-
trix are recorded in step 4 and the time to compute the feedforward update is
recorded in step 6. The procedure is repeated for trajectories A and B, models
1, 2 and 3 and for the parameter sets defined in section 6.2. In practice, the
iterative procedure could be stopped if the tracking error drops below a certain
threshold and it is desirable that the tracking error reaches this threshold in
less than 10 iterations. Nevertheless, the iterative procedure is repeated for 10
iterations in this chapter to show that the tracking error does not diverge when
continuing iterations.

6.2 Parameter selection

This section describes the selection of the robustness filter and the parameters
for the NILC and RILC algorithms as used for the experiments.

6.2.1 Norm-optimal ILC

The NILC algorithm from chapter 3 computes the feedforward update that
minimises an objective function that is a weighted sum of the norm of the error
estimate and the norm of the feedforward update. The selection of the weights
in the objective function is discussed in this subsection. Moreover, the selection
of the robustness filter is discussed.

Selection of the weights

The errors in the y′ and the z′-direction are considered equally important along
the whole trajectory and thus Vi = I is taken. Similarly, there is no reason to
vary the weight on the components of the feedforward update along the trajec-
tory and thus Wi = w2I is taken, where parameter w determines the relative
contribution of the feedforward update to the objective function.

Guidelines for the selection of w are given in subsection 3.4.4. The con-
vergence rate can be increased by decreasing the value of w, though this also
decreases the allowable model error. The effect of w on the convergence is
demonstrated by testing the performance of NILC for three values of w2, viz.,
w2 = { 1

3 , 1, 2}. At low frequencies the dynamics of the robot system are square,
modelled accurately and the gain is unity (see section 5.3). Under these con-
ditions the convergence of the low-frequency components of the error can be
decoupled according to the decoupled convergence analysis in subsection 3.4.3.
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The convergence ratio of the low-frequency components of the error can be
derived from equation (3.64) and is { 1

4 ,
1
2 ,

2
3} for w2 = { 1

3 , 1, 2} respectively.

Selection of the robustness filter

Guidelines for the selection of the robustness filter for NILC are also given in
subsection 3.4.4. The robustness filter should be zero for the components of the
error corresponding to a large model error to obtain convergence. On the other
hand, the robustness filter should be unity for the other components of the error
to reduce these error components to zero. In subsection 5.3.6 it is shown that
the model error is largest at high frequencies. The robustness filter should thus
be close to zero at high frequencies to obtain convergence, but the filter should
be close to unity at low frequencies to reduce these components of the error to
zero.

The desired behaviour for the robustness filter is realised by using an zero-
phase eighth-order low-pass Butterworth filter. The cutoff frequency of the filter
separates the low-frequency and the high-frequency region. The high order of
the filter makes the gain change from about unity to about zero in a small
frequency band and no phase-distortion is introduced at low-frequencies due
to the zero-phase behaviour. The zero-phase eight-order low-pass Butterworth
filter is realised by filtering the feedforward with a conventional fourth-order low-
pass Butterworth filter and filtering the output of this filter with the transpose of
the same filter. The transpose of the filter has the same gain, but opposite phase.
Thus, filtering with the transpose doubles the attenuation of high frequencies
and compensates for the phase shift. The transpose of the filter is anti-causal
and implemented by filtering backward in time. The initial state of the causal
part of the robustness filter is taken equal to the steady-state response of the
filter’s states to the first sample of its input. This way, the initial output of the
filter is equal to the initial input instead of being zero. Similarly, the final state
of the anti-causal part of the robustness filter is taken equal to the steady-state
response of the filter’s state to its final input. This way, the final output of the
filter is equal to the final input instead of being zero.

The cutoff frequency of the robustness filter is selected such that the feedfor-
ward converges. The condition for convergence of the feedforward is expressed
by inequality (3.38). This inequality cannot be checked mathematically, since
the lifted system matrix G is not known exactly. Instead, the convergence condi-
tion could be checked, by verifying if ‖Q (I −LG)u‖2 / ‖u‖2 < 1 for any vector
u, where Gu is obtained experimentally. Checking this convergence condition
for a complete set of independent vectors u requiresNi ×Nf experiments, which
is very time consuming for long iterations. Only a single experiment is needed
to check the convergence of the feedforward if it is known which components
converge independently. For LTI systems and (infinitely) long iteration, the fre-
quency components of the feedforward converge independently (Dijkstra, 2004).
The same approximately holds for the robot system of which the frequency re-
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sponse changes only slowly along the trajectories. Therefore, the convergence
condition is checked for each of the frequency components of a set of broadband
multisine excitations. The need for additional experiments is obviated by using
the experimental data that is also used for the estimation of the parameters of
models 2-3 and the model uncertainty (see section 5.3).

It is thus demanded that each of the frequency components of the broadband
multisine excitation converges. This is verified by dividing power spectrum of
Q (I −LG)u by the power spectrum of u, where Gu is obtained experimen-
tally. The resulting amplification of the power spectrum is averaged over the
measurement series and the result is maximised over the two feedforward input
components. As an example, figure 6.1(a) shows the amplification of the power
spectrum for model 3, trajectory A, w2 = 1

3 and Q = I. The displayed ampli-
fication of the power spectrum is larger than 0 dB at high frequencies, which
means that application of NILC without a robustness filter probably results in
divergence of the high-frequency components of the feedforward. This confirms
the necessity for a low-pass robustness filter. The previously described eighth
order zero-phase low-pass Butterworth filter is applied. The highest cutoff fre-
quency for which the averaged power transfer function does not exceed 0 dB
is taken, which is referred to as the maximum allowable cutoff frequency. The
maximum allowable cutoff frequency is computed with a bisection algorithm.
The bisection algorithm starts with a lower frequency bound of 0 Hz and an
upper frequency bound of 125 Hz (the Nyquist frequency) and stops when the
difference between the lower and upper bound is less than 1 Hz. For model 3,
trajectory A and w2 = 1

3 the resulting cutoff frequency is 25 Hz. Figure 6.1(b)
shows the convergence of the power spectrum of the feedforward for this maxi-
mum allowable cutoff frequency. The maximum allowable cutoff frequencies for
the other models, trajectories and values of w are listed in table 6.1. The table
shows that the allowable cutoff frequency increases with the value of w, which
is in line with the convergence analysis in section 3.4. Moreover, the allowable
cutoff frequency is least for model 1, which is not able to describe the dynamics
of the robot system beyond the bandwidth, and highest for model 3, which is
able to describe the variation of the (high-frequency) robot dynamics along the
trajectories.

The maximum allowable cutoff frequencies listed in table 6.1 are used for
the implementation of the robustness filter for the experiments of which the
results are described in section 6.3. The convergence analysis in subsection 3.4.4
concludes that the robustness filter not only affects the convergence but also
the final error. The effect of the selected cutoff frequencies on the final error is
analysed in subsection 6.2.3.
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Figure 6.1: Convergence of the power spectrum of the feedforward for a series
of multisine feedforwards for NILC, model 3, trajectory A, and w2 = 1

3

trajectory model w2 = 1
3 1 2

A 1 11.8 12.9 15.2
A 2 15.2 16.9 21.4
A 3 28.2 31.8 32.5
B 1 10.4 11.6 14.0
B 2 21.4 23.4 24.2
B 3 23.4 24.2 25.0

Table 6.1: Maximum allowable cutoff frequencies for NILC in Hz
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6.2.2 Robust ILC

The RILC algorithm from chapter 4 computes the learning filter that minimises
an objective function, which is defined such that robust convergence with con-
vergence ratio γ is guaranteed if the objective function is negative definite for
the optimal learning filter and the worst case effect of the specified model uncer-
tainty. This condition for convergence is referred to as the sufficient condition
for robust convergence (SCRC). The model uncertainty is specified by the un-
certainty weighting filters. These selection of the uncertainty weighting filters
and the maximum convergence ratio γ is discussed in this chapter. Moreover,
the selection of the robustness filter is discussed.

Selection of the maximum convergence ratio

Guidelines for the selection of the maximum convergence ratio γ are given in
subsection 4.4.3. The maximum convergence ratio γ specifies the maximum con-
vergence ratio for the summed error if the SCRC is satisfied. Thus, decreasing
the value of γ, decreases the convergence rate. However, decreasing the value
of γ could also decrease the model error for which the SCRC is satisfied, which
is exemplified by the decoupled analysis in subsection 4.4.2. The effect of γ on
the convergence is demonstrated by testing the performance of RILC for three
values of γ, viz., γ = {0.50, 0.75, 0.99}

Selection of the uncertainty weighting filters

Guidelines for the selection of the uncertainty weighting filters are also given
in subsection 4.4.3. The uncertainty weighting matrices are selected in line
with those guidelines as described in subsection 5.3.6. A dynamic pre-weighting
filter M and a static post-weighting filter N are selected. The dynamics of
the pre-weighting filter are based on an estimation of the model uncertainty.
The tuning parameter that remains is the weight ratio β that scales the relative
size of the weighting filters and specifies the 2-norm of the post-weighting filter.
According to the guidelines given in subsection 4.4.3, the value of β2 should
be less than γ2 to satisfy the condition for the existence of an optimal learning
filter. Furthermore, taking β only slightly smaller than γ increases the model
uncertainty for which the SCRC is satisfied if R = I. The effect of β on the
convergence of the error is demonstrated by testing the performance of RILC
for three values of β, viz., β = {0.20γ, 0.50γ, 0.99γ}.

Selection of the robustness filter

Guidelines for the selection of the robustness filter for RILC are also given in
subsection 4.4.3. The robustness filter should be zero for the components of the
error corresponding to a large model uncertainty to obtain convergence. On the
other hand, the robustness filter should be unity for the other components of the
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t m γ = 0.50 0.75 0.99 0.50 0.75 0.99 0.50 0.75 0.99
β
γ

= 0.20 0.20 0.20 0.50 0.50 0.50 0.99 0.99 0.99

A 1 - 3.9 12.7 - 6.8 10.7 4.9 6.8 8.8
A 2 - - 17.6 - 9.8 15.6 6.8 9.8 12.7
A 3 - - 24.4 - 11.7 21.5 7.8 14.6 16.6
B 1 - - 12.7 - 6.8 10.7 4.9 6.8 8.8
B 2 - - 20.5 - 8.8 17.6 6.8 10.7 14.6
B 3 - 10.7 20.5 - 10.7 17.6 7.8 10.7 14.6

t: trajectory, m: model

Table 6.2: Maximum allowable cutoff frequencies for RILC in Hz

error to reduce these error components to zero. Note that the same guidelines
are used for the selection of the robustness filter for NILC (see subsection 6.2.1).
Because the model uncertainty is largest at high frequencies, a zero-phase eighth-
order low-pass Butterworth filter is selected for RILC as well.

The cutoff frequency of the robustness filter for RILC is selected using the
same bisection algorithm as used for the selection of the cutoff frequency for
NILC, though a different criterion is used. The bisection algorithm is used to
find the highest cutoff frequency for which the SCRC is satisfied. The resulting
cutoff frequency is referred to as the maximum allowable cutoff frequency. The
computationally efficient procedure from subsection 4.3.2 is used for checking the
SCRC. The resulting maximum-allowable cutoff frequencies for all trajectories,
models and values of parameters γ and β are listed in table 6.2. In some cases
no cutoff frequency could be found for which the SCRC is satisfied. Table 6.2
shows that the allowable cutoff frequency is least for model 1, which is not
able to describe the dynamics of the robot system beyond the bandwidth. The
allowable cutoff frequency for trajectory B is highest for models 2 and 3, which
are both able to describe the robot’s high-frequency dynamics. The allowable
cutoff frequency for trajectory A is highest for model 3, which is able to describe
the considerable variation of the robot dynamics along this trajectory. Moreover,
the table shows that the allowable cutoff frequency increases for an increasing
value of γ, which is in line with the convergence analysis in section 4.4. The
relation between the allowable cutoff frequency and β depends on the value of
γ; the allowable cutoff frequency decreases with an increasing value of β for
γ = 0.99, while the opposite is true for γ = 0.75 and γ = 0.50.

The maximum allowable cutoff frequencies listed in table 6.2 are used for
the implementation of the robustness filter for the experiments of which the
results are described in section 6.3. The convergence analysis in subsection 4.4.3
concludes that the robustness filter not only affects the convergence but also
the final error. The effect of the selected cutoff frequencies on the final error is
analysed in subsection 6.2.3.
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6.2.3 Prediction of the final error

In the previous subsections the selection of the robustness filters for NILC and
RILC is discussed. In both cases a low-pass filter is selected and the selection
of the cutoff frequency is based on a convergence analysis. Below the cutoff
frequency the gain of the low-pass robustness filter is approximately unity and
thus the low-frequency components of the error are compensated (see the con-
vergence analyses in sections 3.4 and 4.4). Beyond the cutoff frequency the
gain of the low-pass robustness filters is approximately zero and thus the high-
frequency components of the error are not compensated (see the convergence
analyses in sections 3.4 and 4.4). The final error can thus be predicted before-
hand from the frequency components of the nominal tracking error beyond the
cutoff frequency.

Thus, the robustness filter is not only needed for convergence, it also deter-
mines the final error. In this work the robustness filter is selected such that
it results in convergence. An alternative approach would be to select (the cut-
off frequency of) the robustness filter based on the required final error. The
resulting robustness filter then dictates the required model accuracy and the
parameter settings for the ILC algorithm to realise convergence.

The nominal tracking error along trajectory A is shown in figure 5.13 and
the nominal tracking error along trajectory B in figure 5.20. The final tracking
error is predicted by filtering the nominal tracking error with an eighth order
zero-phase high-pass Butterworth filter. The resulting MAX and RMS final
tracking errors as a function of the cutoff frequency of the filter are shown in
figures 6.2(a) and 6.2(b). The desired MAX final error is 0.1 mm. Figure 6.2(a)
shows that reducing the MAX error along trajectory A to 0.1 mm in both
directions requires compensation of the frequency components of the error up
to 30 Hz. This frequency is beyond the first resonance frequency of the robot
mechanism, which is around 20 Hz. Considering the cutoff frequencies for NILC
listed in table 6.1, the required accuracy can only be realised with NILC using
model 3 and w2 = {1, 2}. Considering the cutoff frequencies for RILC listed
in table 6.2, the required accuracy cannot be realised by the application of
RILC. The highest cut-off frequency for RILC is 24.4 Hz, which is realised for
model 3, γ = 0.99 and β = 0.20γ. Figure 6.2(b) shows that reducing the MAX
error along trajectory B to 0.1 mm in both directions requires compensation
of the frequency components of the error up to 13 Hz. Considering the cutoff
frequencies for NILC listed in table 6.1, this accuracy can be realised with
NILC for all models and a sufficiently large value for w. Considering the cutoff
frequencies for RILC listed in table 6.2, the required accuracy can be realised
for models 2-3 using γ = 0.99.

So far, the effect of iteration-varying disturbances on the error has not been
taken into account for the prediction of the final error. The effect is also not
taken into account for the model-based prediction of the error in the current
iteration that is reduced by the proposed ILC algorithms. As a result, the ILC
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Figure 6.3: The repeatability of the measured tracking error for 10 repetitive
motions along the trajectories
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algorithms do not counteract the iteration-varying disturbances and the reduc-
tion of the tracking error by ILC is limited by the effect of iteration-varying
disturbances. The effect of iteration-varying disturbances on the tracking error
is measured by moving 10 times along the nominal trajectory at nominal speed.
Figure 6.3 shows the deviation of the measured tracking error in each repeti-
tion from the mean of the tracking errors in the 10 repetitions. The measured
repeatability of the tracking error is similar for trajectories A and B. Along
most of these trajectories the level of repeatability is better than 0.04 mm. This
level of repeatability is the result of the repeatability of the robot motion and
the resolution of the sensor (see subsections 5.1.1 and 5.1.3). Occasionally the
repeatability peaks about 0.1 mm in the y′-direction. These peaks are caused
by the image-processing algorithm of the sensor software that sometimes misin-
terprets the location of the seam from the camera-image. The ILC algorithms
are probably unable to compensate the tracking error below the measured level
of repeatability.

6.3 Experimental results

This section presents the experimental results from the application of the pro-
posed NILC and RILC algorithms to the Stäubli RX90 robot.

6.3.1 Norm-optimal ILC

NILC is applied to the Stäubli RX90 robot in line with the experimental proce-
dure described in section 6.1. The experimental procedure is repeated for trajec-
tories A and B (see section 5.2), models 1-3 (see section 5.3) and w2 = { 1

3 , 1, 2}
(see subsection 6.2.1). The robustness filter is implemented as described in
subsection 6.2.1.

Figures C.1 and C.5 in appendix C show the MAX and RMS error in the
10 iterations of each experiment. The figures show that the MAX and RMS
errors converge for all experiments, which means that the cutoff frequency for
the robustness filter is selected sufficiently small. Moreover, it is shown that a
small value of weight w results in fast convergence of the MAX and RMS error.
This is in line with the conclusions of the convergence analysis in section 3.4.
The tracking error converges to its final value in about 4 iterations for w2 = 1

3 ,
while the error is not fully converged in 10 iterations for w2 = 2.

Furthermore, the results in figures C.1 and C.5 show that the MAX fi-
nal error is small for a large value of w or a model that is able to describe
the configuration-dependent high-frequency dynamics of the robot system ac-
curately. Comparison of MAX final error in the experiments and the cutoff
frequencies listed table 6.1 shows that the MAX final error is smaller for a
larger cutoff frequency. This agrees with the conclusion in subsection 6.2.3,
that the MAX final error is smaller for a larger value of the cutoff frequency.
Moreover, it is concluded in subsection 6.2.3 that the tracking error should be
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compensated up to 30 Hz to reduce the MAX tracking error to less than 0.1 mm
for trajectory A, while the error should be compensated up to 13 Hz to achieve
this goal for trajectory B. In most of the experiments where the cutoff frequency
is beyond 30 Hz and 13 Hz for trajectories A and B respectively, the MAX final
tracking error is indeed close to 0.1 mm (see figures C.1 and C.5). The MAX
final tracking error for trajectory A, model 3 and w2 = 2 and for trajectory B,
models 1-2 and w2 = 2 are a bit larger than 0.1 mm, which seems to contradict
this conclusion, though the error is not fully converged in the 10 iterations for
these experiments. It should be noted that the MAX final error is hardly smaller
than 0.1 mm in any of the experiments. Probably this is the result of the limited
repeatability of the measurement of the seam location (see subsection 6.2.3).

The desired MAX final tracking error is 0.1 mm. The MAX final error
along trajectory B is approximately reduced to this value for all models and a
sufficiently large value of w. The MAX final error along trajectory A is only
reduced to this value using the LTV model 3, which is able to describe the
configuration dependent dynamics of the robot. The tracking error along the
trajectories converges fastest to the desired value using model 3 and w2 = 1

3 .
The tracking errors in iterations 1 and 9 of the corresponding experiments are
shown in figure 6.4. The tracking errors in iterations 1 and 9 of the other
experiments are shown in appendix C.

The NILC algorithm is implemented in MATLAB on the PC described in
subsection 5.1.4 using the algorithm described subsection 3.3.2 and section B.1.
The memory that is required to store the time-varying Riccati matrix is listed
in table 6.3. The memory scales quadratically with the state-dimension and
scales linearly with the time. The required memory is sufficiently small to
allow implementation of the NILC algorithm on the used PC. The time to
compute the time-varying Riccati matrix and the feedforward update are also
listed in table 6.3. According to subsection 3.3.2 the number of computational
operations of the algorithms scales linearly with the length of the iteration (if
the state-dimension is constant). The ratio between the computation times for
trajectories A and B are somewhat larger than the ratio between the number
of time steps. Nevertheless, the computation times are sufficiently small to
allow implementation of the NILC algorithm on the used PC. In particular, the
computation time for updating the feedforward is less than the time that is
needed by the robot to move along the trajectory. The feedforward for the next
iteration can thus be computed while the robot moves back to the start of the
trajectory at nominal speed.
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memory to time to time to
trajectory model Ni Nx̃ store Si compute Si compute ui

(MB) (s) (s)
A 1 499 4 0.064 0.2 0.5
A 2 499 18 1.293 3.2 0.8
A 3 499 18 1.293 3.4 0.9
B 1 796 4 0.102 0.4 1.2
B 2 796 18 2.063 7.4 1.7
B 3 796 18 2.063 7.6 1.6

Table 6.3: Computational efficiency of NILC

6.3.2 Robust ILC

RILC is applied to the Stäubli RX90 robot in line with the procedure de-
scribed in section 6.1. The experimental procedure is repeated for trajectories
A and B (see section 5.2), models 1-3 (see section 5.3), γ = {0.50, 0.75, 0.99}
and β = {0.20γ, 0.50γ, 0.99γ} (see subsection 6.2.2). The robustness filter is
implemented as described in subsection 6.2.2.

Figures C.2-C.4 and C.6-C.8 in appendix C show the MAX and RMS error in
the 10 iterations of all experiments. The figures show that the MAX and RMS
errors converge for all experiments, which means that the cutoff frequency for the
robustness filter is selected sufficiently small (see subsection 6.2.2). Moreover,
it is shown that a small value of γ results in fast convergence of the MAX and
RMS error. This is in line with the conclusions of the convergence analysis
in section 4.2. The MAX and RMS error converge in only 2 iterations for
γ = 0.50, in 3-4 iterations for γ = 0.75, while the error is not even converged
in 10 iterations for some experiments with γ = 0.99. Besides, the results in the
figures show that the convergence ratio is significantly affected by the value of
β. The larger the value of β, the faster the convergence. Even for γ = 0.99 the
MAX and RMS error converge in only 2 iterations if β = 0.99γ.

Furthermore, the results in figures C.2-C.4 and C.6-C.8 show that the MAX
final error is small for a large value of γ or a model that is able to describe
the configuration-dependent high-frequency dynamics of the robot system ac-
curately. Comparison of MAX final error in the experiments and the cutoff
frequencies listed table 6.2 shows that in most cases the MAX final error is
smaller for a larger cutoff frequency. This agrees with the conclusion in subsec-
tion 6.2.3, that the MAX final error is smaller for a larger value of the cutoff
frequency. An exception to this conclusion is the MAX final error in iteration
9 for γ = 0.99, which decreases with the value of β, while the cutoff-frequency
also decreases with the value of β. However, this is the result of the decrease
of the convergence rate with the value of β, by which the error is not yet fully
converged in the 10 iterations of the experiments if β is small and γ = 0.99.
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It is concluded in subsection 6.2.3 that the tracking error should be com-
pensated up to 30 Hz to reduce the MAX tracking error to less than 0.1 mm
for trajectory A, while the error should be compensated up to 13 Hz to achieve
this goal for trajectory B. The MAX final tracking error along trajectory B is
indeed close to 0.1 mm if the cutoff frequency is beyond 13 Hz, which is the case
for γ = 0.99 and model 2 or 3 (see figure C.6). In contrast to model 1, these
models are able to describe the dynamics of the robot beyond its bandwidth.
The MAX tracking error is also close to 0.1 mm for γ = 0.75 and model 2 or
3, because in those cases the cut-off frequency is 10.7, which is only a little
less than the required 13 Hz. It should be noted that the MAX final error is
hardly smaller than 0.1 mm in any of the experiments. Probably this is the
result of the limited repeatability of the measurement of the seam location (see
subsection 6.2.3). The MAX final error along trajectory A is not reduced to
0.1 mm by RILC in any of the experiments, because the cutoff frequency is less
than 30 Hz for all models and values of γ and β. The smallest MAX final error
realised by RILC along trajectory A, which is realised using model 3, γ = 0.99,
β = 0.99γ, is 0.18 mm. In contrast to models 1 and 2, model 3 is able to describe
the variation of the robot dynamics along trajectory A as a result of the large
change of configuration.

The smallest error along both trajectories is obtained for model 3, γ = 0.99
and β = 0.99γ. Moreover, the tracking error is already close to its final value in
only 2 iterations. Thus, γ = 0.99 and β = 0.99γ are settings that result in fast
convergence to a small tracking error. The tracking errors in iterations 1 and 9
of the corresponding experiments are shown in figure 6.5. The tracking errors
in iterations 1 and 9 of the other experiments are shown in appendix C.

The RILC algorithm is implemented in MATLAB on the PC described in
subsection 5.1.4 using the algorithms described subsection 4.3.2 and section B.2.
The memory that is required to store the time-varying Riccati matrix is listed
in table 6.4. The memory scales quadratically with the state-dimension and
linearly with time. The storage of the time-varying Riccati-matrix for RILC
requires up to 20.21 Mb due to the large state-dimension of the uncertainty
pre-weighting filter. Still, this memory is sufficiently small to allow implemen-
tation of RILC on the used PC. The time to compute the time-varying Riccati
matrix and the feedforward update are also listed in table 6.4. According to sub-
section 4.3.2 the number of computational operations of the algorithms scales
linearly with the length of the iteration. This cannot be verified by comparing
the computation times for both trajectories due to the difference in the state
dimension of the uncertainty pre-weighting filter for both trajectories. The time
to compute the time-varying Riccati matrix for RILC requires up to 83.8 s, due
to the large state-dimension. Still, the computation time is sufficiently small to
allow implementation on the used PC. Note that the Riccati matrix needs to be
computed only once for each experiment and not for each iteration. The time
to compute the feedforward also allows implementation of the RILC algorithm
on the used PC, but it is larger than the time that is needed to move the robot
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memory to time to time to
trajectory model Ni Nx̃ store Si compute Si compute ui

(MB) (s) (s)
A 1 499 54 11.641 23.5 6.0
A 2 499 71 20.124 41.0 11.7
A 3 499 60 14.371 28.1 8.7
B 1 796 54 18.569 58.3 10.2
B 2 796 64 20.124 82.8 19.3
B 3 796 48 14.672 46.7 10.0

Table 6.4: Computational efficiency of RILC

along the trajectory. Thus, the feedforward update cannot be computed while
the robot moves back at nominal speed. The time to compute the feedforward
update can be reduced by using a faster PC or by the implementation of the
RILC algorithm using a more efficient computation environment than MAT-
LAB. The computation time can also be reduced by the selection of uncertainty
weighting filters with a smaller state-dimension, which would also reduce the
time and memory required for the Riccati matrix.
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6.4 Discussion

In this section the experimental results from section 6.3 are discussed in relation
to the objectives of this thesis.

6.4.1 Accurate tracking

The experimental results show that the MAX final error depends on the size
of the cutoff frequency of the robustness filter. The larger the value of the
cutoff frequency, the lower the final error. The selection of the cutoff frequency,
which is described in section 6.2, is based on convergence analysis. The cutoff
frequency for NILC is based on the analysis of the convergence of the frequency
components of the feedforward for a set of experimental data. The highest
cutoff frequency for which all frequency components of the feedforward converge
is taken. A higher cutoff frequency results in divergence of the high-frequency
components of the feedforward. The selection of the cutoff frequency for RILC
is based on the specification of the model uncertainty from subsection 5.3.6 and
the sufficient condition for robust convergence (SCRC) formulated in section 4.2.
The highest cutoff frequency for which the SCRC is satisfied is taken. The cutoff
frequency for RILC is lower than the cutoff frequency for NILC, which can be
explained by the following reasons. Firstly, the model uncertainty is specified
conservatively as discussed in subsection 5.3.6. Secondly, the sufficient condition
for convergence of RILC is more conservative than the condition for convergence
of NILC as discussed in subsection 4.4.3. It is well possible that a higher cutoff
frequency for RILC would still result in convergence. As a consequence of the
lower cutoff frequency selected for RILC, the final error for RILC is larger than
the final error for NILC.

The experimental results in section 6.3 show that the tracking error along
trajectory B, which is typical for welding trajectories in industry, can be reduced
to about 0.1 mm by the NILC algorithm and the RILC algorithm. Reducing
the tracking error along trajectory B to 0.1 mm, requires compensation of the
components of the tracking error at frequencies beyond the bandwidth of the
robot system. In the experiments this is realised by NILC for all models and a
sufficiently large value of w. The accuracy is only realised by RILC for models 2
and 3, which are able to describe the high-frequency dynamics of the robot. The
tracking error along trajectory A, which contains considerable high-frequency
components, can be reduced to 0.1 mm by the NILC algorithm. The RILC
algorithm is only able to reduce the tracking error to 0.18 mm. The larger final
tracking error for RILC is the result of the lower cutoff frequency. Reducing the
tracking error along trajectory A to 0.1 mm requires compensation of the com-
ponents of the tracking error at frequencies beyond the first resonance frequency
of the robot mechanism. In the experiments this is only realised by NILC for
model 3, which describes the high-frequency dynamics of the robot system and
the variation of the dynamics along the trajectory.
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Concluding, the tracking accuracy at the tip of the Stäubli RX90 robot,
which is measured with a seam-tracking sensor, can be improved considerably
by the proposed ILC algorithms. The tracking error can even be reduced close
to the repeatability of the robot system. Thus, the proposed ILC algorithms are
suited to realise high-accuracy tracking at the tip of an industrial robot. The
high-accuracy is realised by reducing the components of the tracking error at
high-frequencies, which requires a model of the robot that is able to describe the
high-frequency robot dynamics. Furthermore, a model of the variation of the
robot dynamics is required if the configuration of the robot changes considerable
along the trajectory. The experimental results thus confirm the statement in
section 1.2 that the ILC algorithm should be able to cope with varying dynamics
to realise the high accuracy tracking.

6.4.2 Convergence rate

The experimental results in section 6.3 show that the MAX and RMS tracking
error converge monotonically for the proposed ILC algorithms. The convergence
rate depends on the parameter setting selected for the ILC algorithms.

According to the convergence analysis in section 3.4, the convergence rate for
NILC is determined by the selection of the weights on the feedforward update
and the error in the objective function. The relative weight on the input is
specified by the value of w. Besides, as illustrated by the decoupled convergence
analysis in subsection 3.4.3, the convergence rate depends on the system gain,
though the system gain of the robot system does not deviate much from unity
over the frequencies. The experimental results show that a small value of w
indeed results in a high convergence rate. Moreover, it is shown that the effect
of the value of w on the allowable cutoff frequency and thus the size of the final
error is only small.

According to the convergence analysis in section 3.2, The convergence ratio
for RILC is at most the selected value of γ. The experimental results show indeed
that a small value for γ results in fast convergence. However, a small value of
γ reduces the allowable cutoff frequency for the robustness filter considerably,
which results in a larger final error. Besides the selection of γ, the selection
of the uncertainty weighting filters influences the convergence rate of the error.
The uncertainty weighting filters specify the model uncertainty and are selected
as described in subsection 6.2.2. The relative size of the uncertainty weighting
filters can be tuned by the selection of the weight ratio β, which is equal to the
gain of the post-weighting filter N . The value of the weight ratio should be less
than γ to be able to compute an optimal feedforward update. The experimental
results show that the selecting β only slightly smaller than γ results in fast
convergence. Moreover, it is shown that the effect of the value of β on the
allowable cutoff frequency and thus the size of the final error is only small.
Realising monotonic convergence with a high convergence rate and a small final
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error can thus be realised by selecting a maximum convergence ratio γ slightly
smaller than 1 and selecting β slightly smaller than γ.

The experimental results thus show that, using an appropriate selection of
the parameters, the MAX final tracking error can be reduced to its final level
in only 3 iterations by NILC and in only 2 iterations by RILC. The number of
iterations required to reach the final error with NILC can be reduced even further
by selecting a smaller value for w. Concluding, the proposed algorithms result
in monotonic convergence of the tracking error and a high-convergence rate can
be realised by appropriate selection of the parameters of the ILC algorithms.

6.4.3 Computational efficiency

The computational efficiency of the algorithms is demonstrated by the record of
the time to compute the time-varying Riccati matrix, the memory to store this
matrix and the time to compute the feedforward update for the experiments.
Those values are listed in table 6.3 for the NILC algorithm and in table 6.4 for
the RILC algorithm.

The memory to store the time-varying Riccati matrix scales linearly with the
length of the iteration and quadratically with the state-dimension. The time to
compute the time-varying Riccati matrix and the time to compute the feedfor-
ward update also grow with the length of the iteration and the state-dimension.
According to subsections 3.3.2 and 4.3.2 the number of computational opera-
tions for these computations scales linearly with the length of the iteration. The
computation times required by the NILC algorithm are very short, the feedfor-
ward update can even be computed within the time the robot needs to move
along the trajectory. The RILC is less efficient in terms of computation time
and memory. This difference is caused by the larger state-dimension for RILC
that is the result of the state-dimension of the uncertainty pre-weighting filter,
which is considerably larger than the state-dimension of the system. Still, the
memory and computation time required by the RILC algorithm are sufficiently
small for implementation on the used PC, which is described in subsection 5.1.4.
Concluding, the proposed NILC and RILC algorithms are sufficiently efficient
to allow implementation on a contemporary PC.

Hereafter, the computational efficiency of the used NILC and RILC algo-
rithms is compared to the computational efficiency of the lifted algorithms de-
scribed subsections 3.3.1 and 4.3.1. These lifted algorithms are implemented
in MATLAB on the same PC as the non-lifted algorithms. The memory to
store the learning matrix L, the time to compute this matrix, and the time to
compute the feedforward update are listed in table 6.5 and 6.6.

The memory required to store the lifted learning matrix scales quadratically
with the length of the iteration, but it is independent of the state-dimension and
the type of algorithm. The memory required to store the learning matrix for the
trajectories considered in the experiments is much larger than the memory re-
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memory to time to time to
trajectory model Ni Nx̃ store L compute L compute u

(MB) (s) (s)
A 1 499 4 7.968 5.0 0.01
A 2 499 18 7.968 5.2 0.01
A 3 499 18 7.968 5.2 0.01
B 1 796 4 20.276 20.2 0.03
B 2 796 18 20.276 20.7 0.03
B 3 796 18 20.276 20.8 0.03

Table 6.5: Computational efficiency of the lifted implementation of NILC

quired to store the time-varying Riccati-matrix for NILC, while it is comparable
to the memory required to store the time-varying Riccati-matrix for RILC.

The time to compute the lifted learning matrix depends on the type of
algorithm and the length of the iteration, but it is independent of the state-
dimension. The time to compute the learning matrix approximately scales with
the third power of the length of the iteration. For the trajectories considered
in the experiments, the time to compute the learning matrix for NILC is much
larger than the time required to compute the time-varying Riccati-matrix for
NILC. For trajectory A, the time to compute the learning matrix for RILC is
shorter than the time to compute the time-varying Riccati-matrix for RILC,
while the computation times are comparable for trajectory B.

The time to compute the feedforward update using the lifted algorithms de-
pends on the length of the iteration, but it is independent of the state-dimension
and the type of algorithm. The time to compute the feedforward update by the
lifted algorithms is much shorter than the time to compute the feedforward
update by the non-lifted algorithms.

Summarising, the time to compute the feedforward update using the lifted
algorithm is considerably shorter than the time required by the non-lifted al-
gorithms and the time and memory required for the learning matrix allow im-
plementation on the used PC. However, the computation time and memory
required for the learning matrix grow with the second and third power of the it-
eration length respectively, which makes the computation of the learning matrix
computationally intensive for long iterations.
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memory to time to time to
trajectory model Ni Nx̃ store L compute L compute u

(MB) (s) s)
A 1 499 54 7.968 13.4 0.01
A 2 499 71 7.968 14.1 0.02
A 3 499 60 7.968 13.7 0.01
B 1 796 54 20.276 53.5 0.03
B 2 796 64 20.276 55.0 0.04
B 3 796 48 20.276 55.0 0.03

Table 6.6: Computational efficiency of the lifted implementation of RILC

6.4.4 Summary

The application of NILC and RILC results in high-accuracy motion of the
Stäubli RX90 robot. The tracking error of the robot, which is measured at
its tip, can be reduced to less than 0.1 mm. Along trajectory B, which is typical
laser welding trajectory in industry, the accuracy of 0.1 mm is realised by both
algorithms using a model that is able to describe the dynamics of the robot
at frequencies beyond the closed-loop bandwidth. Along trajectory A, which
results in a considerable change of the robot configuration, the tracking accu-
racy of 0.1 mm is realised by the NILC algorithm using a model that is able to
describe the variation of the dynamics along the trajectory. This demonstrates
the value of an ILC algorithm that is able to cope with varying dynamics if
the configuration of the robot changes considerably along the trajectory. RILC
is able to reduce the maximum absolute tracking error along trajectory A to
0.18 mm. Further reduction cannot be realised by RILC because of the conser-
vative specification of the model uncertainty. The proposed NILC and RILC
algorithms result in monotonic convergence of the tracking error and the final
tracking error can be realised in only 3 iterations using an appropriate selection
of the tuning parameters. Moreover, the ILC algorithms do not add feedback
action to the standard industrial CS8 controller and the computational effi-
ciency of the algorithms is sufficient for implementation on a contemporary PC.
It can thus be concluded from the experiments that all requirements imposed
by the objectives of this thesis (see section 1.2) are satisfied. In section 6.5 it
is shown that the improved tracking accuracy results in an improvement of the
weld quality for laser welding.
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6.5 Welding Results

In the previous section it is shown that ILC can improve the tracking accuracy
of an industrial robot considerably. This section describes an experiment that
shows the effect of the improvement of the tracking error on the weld quality.
This effect is demonstrated by welding a seam using the nominal trajectory and
the trajectory that is updated with ILC.

The seam is formed by the edge of a metal plate that overlaps a second
plate. These plates are depicted in figure 6.6 and the dimensions are shown in
figure 6.7. The geometry of the seam is similar to the geometry of trajectory
B (see subsection 5.2.2). The Stäubli RX130 robot (Stäubli, 2001) is used to
manipulate the welding head along the weld seam. This robot resembles the
Stäubli RX90 robot, but its links are larger and its drives more powerful. The
larger reach and the higher load capacity make this robot more suited for real
welding tasks with a fully equipped welding head. The nominal trajectory is
obtained by interpolating a cubic spline through points with an intermediate
distance of 20 mm along the trajectory. The locations of those points are found
using the seam-tracking sensor (see subsection 5.1.3). The x′-direction of the
sensor is aligned with the local direction of the seam and the z′-direction is
kept aligned with the global z-direction. The welding head thus rotates in the
curved part of the trajectory. Keeping the welding head in a fixed orientation
with respect to the weld seam facilitates the detection of the seam location
by the seam tracking sensor and the unidirectional delivery of the shielding
gas that protects the weld area from atmospheric gasses. The velocity profile
is trapezoidal with a maximum velocity of 100 mm/s. The nominal tracking
error is small along the straight part of the seam and considerably larger in
the curved part of the trajectory as a result of the high joint velocities and

upper plate

seam

lower plate

x

y

z

(the arrows indicate the directions of Oxyz, not the origin)

Figure 6.6: The weld seam
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120 mm
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R 35 mm

Figure 6.7: The geometry of the weld seam

accelerations in this part. The tracking error peaks at the start and the end
of the curved part where the centripetal acceleration of the welding head starts
and ends respectively. The tracking accuracy is improved by the application of
NILC using model 1 (see section 5.3). After 10 iterations the MAX tracking
error is less than 0.2 mm along the whole trajectory.

The welded plates are made of aluminium (AA5182) and the thickness is
1.1 mm. The laser power is set to 3000 W during welding. Two seams are
welded, one seam using the nominal trajectory and the other using the trajectory
updated with ILC. Figure 6.8 shows pictures of the resulting welds. The width
of the weld that is traced using the nominal trajectory is irregular, in particular
along the curved part of the seam. This is partly the result of insufficient wetting
of the lower plate. The effect is most noticeable at the start and end points of
the curved part. Moreover, inspection of the bottom side of the plate shows
that the lower plate is not fully penetrated at those points. The parts of the
seam with the degraded weld quality correspond to the parts of the trajectory
that are not traced accurately. The weld quality is good and constant along
the seam that is welded using the trajectory updated with ILC. The experiment
thus shows the beneficial effect of the improved tracking accuracy realised with
ILC on the weld quality.
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decreased weld width

(a) Nominal trajectory (b) Trajectory compensated with ILC

Figure 6.8: Welding results
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Conclusions and discussion

7.1 Conclusions

The aim of this thesis is the development of ILC algorithms for realising high-
accuracy motion at the tip of an industrial robot. In section 1.2 the require-
ments on the ILC algorithm following from this objective are derived. It is
observed that the high accuracy can only be realised by reducing the frequency
components of the tracking error beyond the bandwidth of the feedback con-
troller. Below the bandwidth the non-linear dynamics of the robot mechanism
are linearised by the controller, but at higher frequencies the closed-loop dynam-
ics depend on the configuration of the robot mechanism. The ILC algorithm
should be able to cope with the configuration dependency of the dynamics to
reduce the frequency components of the tracking error beyond the bandwidth
of the feedback controller. In this work the non-linear configuration dependent
dynamics are approximated as linear time-varying along a trajectory, resulting
in the following requirement on the ILC algorithm:

• The ILC algorithm should be applicable to systems with linear time-
varying dynamics.

In addition to this requirement, the following requirements are formulated to
enhance the practical applicability :

• The ILC algorithm should result in monotonic convergence to a small final
error,

• The ILC algorithm should result in a high convergence rate of the tracking
error,

• The ILC algorithm should be computationally efficient,

• The ILC algorithm should be applicable to an industrial robot operating
in closed-loop with its standard controller without adding feedback action.
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No ILC algorithm that satisfies all these requirements is found from the lit-
erature review in chapter 2. Nevertheless, it is concluded from the review
that model-based ILC is the most suitable approach to meet all requirements.
Therefore, two model-based ILC algorithms are developed in this work. A
norm-optimal ILC (NILC) algorithm is described in chapter 3 and a robust ILC
(RILC) algorithm is described in chapter 4. The convergence properties of the
algorithms are also analysed in chapters 3 and 4. The performance of the algo-
rithms is tested experimentally by the application to an industrial robot, which
is described in chapters 5. The experimental results are presented in chapter 6.
In this chapter the conclusions from the previous chapters are summarised and
related to the formulated requirements on the ILC algorithms. The conclusions
resulting from the development of the algorithms and the convergence anal-
yses are discussed in subsection 7.1.1 and the conclusions resulting from the
experiments are discussed in subsection 7.1.2.

7.1.1 Conclusions from the developments and the analyses

Model based algorithms for LTV dynamics

The NILC algorithm developed in chapter 3 iteratively computes the feedfor-
ward that minimises the weighted sum of the norm of the feedforward update
and the prediction of the error in the current iteration. The error is predicted
from a model with LTV dynamics. The NILC algorithm is thus suited for the
application to systems with LTV dynamics.

The RILC algorithm developed in chapter 4 iteratively applies the feedfor-
ward that minimises an objective function that is related to the growth of the
sum of the error over the iterations. The growth of this sum is predicted from
a model with LTV dynamics and a specified bounded uncertainty. Thus, the
RILC algorithm is also suited for the application to systems with LTV dynamics.

Monotonic convergence to a small final error

The objective function for NILC (equation (3.10)) is formulated in terms of the
2-norm of the error and thus NILC aims at achieving monotonic convergence
of the error. The convergence analysis in section 3.4 shows that NILC results
in monotonic convergence of the error to zero if no robustness filter is used,
if the system is nonsingular and if its dynamics are modelled perfectly or if
the model error satisfies inequality (3.42). The error does not converge to zero
if this condition is not satisfied, though it is always possible to realise mono-
tonic convergence of the feedforward by selecting a robustness filter such that
inequality (3.39) is satisfied. The robustness should filter out those feedforward
components to which the system’s response is not modelled accurately. How-
ever, the removal of these components of the feedforward typically results in a
nonzero final error.
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The objective function for RILC (equation (4.23)) is formulated in terms
of the 2-norm of the sum of the error over the iterations. Minimisation of
this objective function aims at achieving monotonic convergence of the error to
zero. The objective function is formulated such that if it is negative for the
minimising feedforward, the worst-case effect of the model uncertainty and any
value of the summed error (inequality (4.24)), then this is a sufficient condition
for monotonic convergence of the summed error. The error converges to zero if
the convergence condition is satisfied without using a robustness filter. However,
the convergence condition is not satisfied without using a robustness filter if the
model uncertainty is large. On the other hand, it is possible to satisfy the
convergence condition for any size of model uncertainty by selecting a suitable
robustness filter, but the use of a robustness filter typically results in a nonzero
final error.

Fast convergence

The analysis of the convergence properties of NILC in section 3.4 shows that
the convergence rate depends on the selection of the weights in the objective
function and the gain of the system. The convergence rate of the error increases
by decreasing the weight on the feedforward update if the system is modelled
perfectly. However, decreasing this weight also decreases the allowable size of
the model error for which the convergence condition is satisfied.

The proposed design of RILC is such that the convergence ratio of the
summed error is at least a specified value if the sufficient condition for ro-
bust convergence is satisfied. The demanded convergence rate can thus be set
explicitly. However, the smaller the selected maximum convergence ratio, the
smaller the size of the model uncertainty for which the convergence condition is
satisfied.

Fast convergence versus a small final error

As concluded above, the convergence rate of the error can be increased by
decreasing the weight on the feedforward update in the objective function for
NILC, but this also reduces the allowable size of the model error. Similarly,
decreasing the maximum convergence ratio for RILC decreases the allowable
size of the model uncertainty. On the other hand, a robustness filter can be
used to realise convergence with a certain convergence rate for any size of the
model error or uncertainty at cost of a nonzero final error. The convergence rate
can thus be increased at cost of a larger final error. The convergence rate and
the final error can be reduced both if the model error or uncertainty is reduced.
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Computationally efficient implementations

The computation of the feedforward update that minimises the objective for
NILC is formulated as a finite-time optimal control problem (equations (3.18)
in section 3.3).

The computation of the learning filter that minimises the objective for RILC
is formulated as a finite-time dynamics game (equations (4.54) in section 4.3).
Moreover, the check of the sufficient condition for convergence is rewritten to an
anti-causal finite-time optimal control problem (equations (4.58) in section 4.3).

The formulated optimal control problems and the dynamic game can be
solved efficiently using existing algorithms, which are described in appendix B.
The computation time and memory required for the implementation of those
algorithms scale linearly with the length of the iteration.

No additional feedback control

The NILC and RILC algorithms proposed in chapters 3 and 4 compute the
feedforward that minimises an objective function related to the prediction of
the error in the current iteration. This prediction is based on a model of the
system dynamics and the measurement of the error in the previous iterations,
such that the measurement of the error in the current iteration is not needed
for the computation of the feedforward. The ILC algorithms thus do not use
feedback of the error in the current iteration.

7.1.2 Conclusions from the experimental results

The performance of the proposed NILC and RILC algorithms in relation to
requirements following from the objective of this thesis is tested experimentally
by the application to a Stäubli RX90 robot. The tracking error of the robot is
measured by an optical sensor mounted at the tip of the robot.

The Stäubli RX90 robot and the model of its dynamics are described in chap-
ter 5. The dynamics of this robot are modelled with a time-varying ARX model
structure. The performance of the ILC algorithms is tested for three models;
model 1 assumes perfect tracking, model 2 assumes time-invariant dynamics and
model 3 assumes slowly varying dynamics. The parameters of models 2 and 3
are estimated from system identification. The specification of the uncertainty in
these models, which is required for the implementation of RILC, is derived from
frequency analysis of the difference between the measured and the simulated
dynamic response of the robot.

The experimental results are presented and discussed in chapter 6. Hereafter,
the conclusions from this chapter are summarised and related to the require-
ments on the ILC algorithm formulated in section 1.2.
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No change of the feedback control

ILC is used to update the setpoints for the position of the robot. This way, the
integrator of the industrial CS8 controller of the Stäubli RX90 robot does not
counteract the low-frequency part of the output of the ILC algorithm, which
would be the case if the ILC algorithm was used to update the torque feed-
forward. The ILC algorithms can thus be used as an add-on to the standard
industrial controller of the Stäubli RX90 robot.

Computational efficiency

The NILC algorithm and the RILC algorithm are implemented using the al-
gorithms from appendix B, which solve the optimal control problem for NILC
formulated in subsection 3.3.2 and the dynamic game for RILC formulated in
subsection 4.3.2. The memory and computation time required by those algo-
rithms for the tested trajectories allow implementation on a contemporary PC.
The time required to compute the feedforward update for NILC is even less
than the time it takes for the robot to move along the trajectory. The RILC
algorithm requires more memory and computation time than the NILC, because
of the large state-dimension of the dynamic uncertainty pre-weighting filter.

The computational efficiency of the lifted algorithms for NILC and RILC,
which are described subsections 3.3.1 and 4.3.1, is also tested. The memory
and computation time required by those algorithms for the tested trajectories
allow implementation on a conventional PC as well. However, the computation
time and memory required for the learning matrix learning matrix grow with
the second and third power of the iteration length respectively, which makes
the implementation of the lifted algorithms computationally intensive for long
iterations.

Monotonic convergence to a small error

A zero-phase low-pass filter is selected as the robustness filter, because the un-
certainty in the dynamic models of the robot is largest at high frequencies. The
cutoff frequency of the robustness filter for NILC is chosen such that it results in
convergence of each frequency component of the feedforward for a set of exper-
imental data. The cutoff frequency of the robustness filter for RILC is chosen
such that the sufficient condition for robust convergence is satisfied. The appli-
cation of the proposed NILC and RILC algorithms with these robustness filters
to the Stäubli RX90 robot results in monotonic convergence of the maximum
and 2-norm of the tracking error in all experiments described in chapter 6.

Besides the aforementioned effect on the convergence, the choice of the ro-
bustness filter has a considerable effect on the final error. It is shown that the
maximum error that remains after application of ILC can be estimated from
filtering the error before the application of ILC with a high-pass filter with the
cutoff frequency of the robustness filter. The frequency components of the error
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beyond the cutoff frequency of the robustness filter are not compensated be-
cause the robustness filter removes the corresponding frequency components of
the feedforward (NILC) or the summed error (RILC). Thus, the higher the cut-
off frequency of the robustness filter, the smaller the remaining error. However,
the maximum of the remaining error cannot be reduced to less than 0.1 mm.
This lower limit is the result of the repeatability of the measurement of the
tracking error of the Stäubli RX90 robot by the optical sensor.

The maximum cutoff frequency for which the convergence conditions of NILC
and RILC are satisfied for the three models are given in tables 6.1 and 6.2.
The cutoff frequency is the smallest for model 1, because this model does not
adequately describe the dynamics of the robot beyond bandwidth of the feedback
controller. The dynamics of the robot beyond the bandwidth are described by
models 2 and 3, resulting in a larger cutoff frequency. The cutoff frequency is the
largest for model 3, especially if the robot configuration changes considerably
along the trajectory, because this model is able to describe the variation of the
robot dynamics along the trajectories. The largest cutoff frequency for NILC
is 32.5 Hz and the largest cutoff frequency for RILC is 25.0 Hz. Those cutoff
frequencies are beyond the first resonance frequency of the robot mechanism,
which is about 20 Hz. The smaller cutoff frequency for RILC is caused by the
conservative specification of the model uncertainty and the conservativeness of
the sufficient condition for convergence that is used for the selection of the cutoff
frequency for RILC.

Fast convergence

The experiments show that the convergence ratio of NILC is reduced by selecting
a small weight on the feedforward update. The tracking error is reduced to its
final value in only 3 iterations if the weight on the feedforward is three times
smaller than the weight on the error.

The experimental results also show that the convergence ratio of RILC is
reduced by selecting a smaller maximum convergence ratio. Furthermore, it
is shown that the convergence ratio strongly depends on the selection of the
uncertainty weighting filters. The tracking error can be reduced to its final
value in only 2 iterations by appropriate selection of the maximum convergence
ratio and the uncertainty weighting filters.

Fast convergence and a small tracking error

The experimental results show that decreasing the weight on the feedforward
update for NILC increases the resulting convergence rate, but hardly affects the
allowable cutoff frequency. A high convergence rate and a small final error are
thus realised by selecting a small weight on the feedforward update.

The experimental results also show that reducing the maximum convergence
ratio for RILC increases the convergence rate, but it reduces the maximum
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allowable cutoff frequency considerably and thus increases the final error. In-
creasing the spectral norm of the uncertainty post-weighting filter increases the
convergence rate as well, but this hardly affects the allowable cutoff frequency
and thus the final error. The gain of the uncertainty post-weighting filter should
be less than the maximum convergence ratio to be able to compute an optimal
learning filter. A high convergence rate and a small final error can thus be
realised by selecting a maximum convergence ratio close to unity and selecting
the spectral norm of the uncertainty post-weighting filter only a little smaller.

Model based ILC algorithms for LTV systems

The experimental results show that the tracking error of the Stäubli RX90 robot,
which is measured at the end-effector of the robot, can be reduced to 0.1 mm by
the application of the proposed ILC algorithms. This accuracy is sufficient for
the application of the robot for laser welding. The small tracking error is only
realised along a typical welding trajectory (trajectory B) by reducing the fre-
quency components of the tracking error beyond the bandwidth of the feedback
controller. It is even possible to reduce frequency components of the tracking
error beyond the first resonance frequency of the robot mechanism, which is re-
quired to realise the required level of accuracy along a more complex trajectory
(trajectory A). These high-frequency components of the tracking error can only
be reduced by ILC using a model that is able to describe the robot dynamics at
these frequencies (models 2 and 3). Moreover, if the configuration of the robot
changes considerably along the trajectory (trajectory A) then the variation of
the dynamics has to be taken into account by the model (model 3) to reduce
the high-frequency components of the tracking error by the application of ILC.
This demonstrates the value of an ILC algorithm that is able to cope with LTV
dynamics.

Summarising, the proposed ILC algorithms are able to realise high-accuracy
motion at the tip of an industrial robot by reducing the frequency components
of the tracking error beyond the bandwidth of the feedback controller. In sec-
tion 6.5 it is shown that the realised reduction of the tracking error actually
results in an improvement of the weld quality for a typical laser welding task.
If the configuration of the robot changes considerably along the trajectory, then
the high accuracy is only realised using a model that describes the variation
of the robot dynamics along the trajectory. The tracking error can be reduced
monotonically to its final value in only a few iterations. Moreover, the ILC
algorithms are used as an add-on to the standard industrial controller without
adding any feedback action and the algorithms are sufficiently efficient for im-
plementation on a contemporary PC. The proposed ILC algorithms thus satisfy
all requirements following from the objective of this work.
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7.2 Recommendations for further research

The results of this thesis raise several issues that deserve further investigation.
These issues are suggested as subject of further research and may lead to im-
proved performance of the proposed ILC algorithms on several aspects

Improved convergence analysis for norm-optimal ILC

The convergence analysis for NILC is based on checking the convergence condi-
tion (3.39). This condition can be checked if the model error is known, though
this is mostly not the case in practice. Alternatively, the condition can be
checked experimentally for a set of linearly independent feedforward inputs,
though this requires a large number of experiments. In this thesis the conver-
gence condition is checked for each frequency component of the feedforward for
a set of experimental data, assuming an independent growth of the frequency
components of the feedforward (see section 6.2.1).

A more fundamental approach to check convergence of NILC is desirable.
Possibly such convergence analysis for NILC could be based on the use of a
specification of the model uncertainty, similar to the convergence analysis that
is used for RILC. The convergence analysis for RILC is based on the solution
of an optimal control problem, which can be solved efficiently. Considering the
similarities in the structure of the solutions for NILC and RILC it is expected
that a similar convergence analysis can be used for NILC. However, the conver-
gence analysis may be conservative, because it is based on a sufficient condition
for convergence.

Improved modelling of the robot dynamics

In this thesis the dynamic model of the Stäubli RX90 robot is based on the
identification of the parameters of a time-varying ARX model from experimental
data. The resulting model describes the configuration-dependent dynamics of
the robot beyond its bandwidth, but it only valid for the trajectory along which
the dynamic response is measured. A new model must be estimated for each
new trajectory.

It is desirable to have model that is able to describe the high-frequency
dynamics of the robot along any trajectory. Probably this can be realised by a
robot model that is based on the physics of the robot mechanism. Such model
should include the effect of flexibilities in the mechanism on the dynamics to be
able to describe the robot dynamics at sufficiently high frequencies. Hardeman
(2008) has formulated such model, but the identification of all parameters of
the model is still subject of research.
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Improved specification of the model uncertainty

In this thesis the specification model uncertainty is derived from the frequency
spectrum of the difference between the measured and the simulated dynamic
response of the robot. The method yields a conservative specification of the
model uncertainty. Firstly, this is the result of using the difference between the
measured and the simulated error for the estimation of the model uncertainty,
while this difference is not only the result of the model error, but also the effect
of stochastic noise. Secondly, the uncertainty in the modelled relations between
the two directions of the feedforward and the error is assumed to be independent,
while probably some dependency is present in the components of the additive
model error. Moreover, the specified model uncertainty is time-invariant, while
the robot dynamics vary along the trajectory and the model error is probably
time-varying as well.

It is desirable to develop a better method for the estimation of the model
uncertainty, which should result in a less conservative specification of the model
uncertainty. A reduction of the model uncertainty can probably be used to
decrease the convergence ratio or the final error for RILC. Possibly, an improved
specification of the model uncertainty can be derived from an estimation of the
uncertainty in the estimated parameters of the robot model, which could be
either the TVARX model or a model with a physical parametrisation. If the
resulting specification of the model uncertainty is time-varying, the proposed
RILC algorithm is still usable as it is able to cope with a time-varying model
uncertainty.

Suitability for other applications

The requirements on the ILC algorithm following from the objective of this work
are formulated using the application to the Stäubli RX90 robot, which is used
laser welding, as a reference. The performance of developed the ILC algorithms
is also tested on this system. Nevertheless, the ILC algorithms proposed in this
thesis are expected to be more generally applicable. It would be interesting to
investigate the applicability of the algorithms to more DOFs of the Stäubli RX90
robot, to other robots or to other (mechanical) systems. The algorithms are
developed for systems with LTV dynamics and they should thus be applicable
to any system with LTV dynamics. The dynamics of a mechanical system with
configuration dependent (weakly non-linear) dynamics can be approximated as
being LTV for small deviations from a repetitively traced trajectory.

Reducing the effect of iteration-varying disturbances

The final error that remains after the application of the proposed ILC algorithms
with a sufficiently high cutoff frequency is predominantly the result of iteration-
varying disturbances (compare figure 6.3 and figures 6.4-6.5(b)). The reduction
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of the effect of iteration-varying disturbances should thus be investigated to
realise if a smaller final error is desired.

One way to reduce the effect of iteration-varying disturbances is to include
terms related to the reduction of iteration-varying disturbances in the objec-
tive functions as proposed by Dijkstra (2004); Norrlöf and Gunnarsson (2002a);
Saab (2004); Yang et al. (2003). The objective functions of the ILC algorithms
proposed in this thesis can easily be extended with additional terms related to
objectives like the reduction of the effect iteration-varying disturbances. An
alternative method to reduce the effect of iteration-varying disturbances is to
use measurements of the error from multiple previous iterations or the current
iteration for the computation of the feedforward (see the discussion in subsec-
tion 2.1.2).

Adaptive type ILC

The ILC algorithms proposed in this work could be used as a basis for the design
of adaptive-type ILC. The adaptive add-ons can be used to overcome some of
the inherent disadvantages of the proposed ILC algorithms.

An interesting adaptive add-on is the updating of the model using the input-
output data measured in the iterations. This method may reduce the model
uncertainty, which can be used to decrease the convergence ratio or final error.
Starting with a (trajectory independent) model of the low-frequency dynamics,
such add-on can be used to estimate the high-frequency dynamics, which makes
the prior estimation of a model for each new trajectory obsolete. Preliminary
experimental results with this technique are promising. However, more research
is needed on the so-called burst-phenomenon (see, e.g., Phan and Frueh, 1999;
Tsakalis, 1994), which is described hereafter. The feedforward input to the
system, which is computed by the ILC algorithm, might not excite the system
dynamics sufficiently, resulting in bad identifiability of some of the model pa-
rameters. In the presence of noise this may result in erroneous estimation of the
model parameters. The feedforward update computed by ILC with such erro-
neous model might result in a growth of the tracking error in the next iteration.
The advantage of the adaptation of the model is that the growth of the tracking
error probably results in a reduction of the model error and a reduction of the
tracking error in future iterations. However, the tracking error may grow large
in some iterations because of the described mechanism.

Another interesting adaptive add-on is to learn the feedforward along several
different trajectories with the proposed ILC algorithms and to use these feedfor-
wards to train a feedforward controller (see, e.g., Arif et al., 2002; Cheah, 2001;
Gorinevsky, 1995; Gorinevsky et al., 1997; Lange and Hirzinger, 1995, 1999a,b).
Such feedforward controller should then be able to generate a feedforward that
compensates for the error along new trajectories. In contrast to non-adaptive
ILC algorithms as considered in this work such feedforward controller would not
be trajectory specific.



Appendix A

Literature on the applica-

tion of ILC to robots

A list of publications that consider the application of ILC to robotic manip-
ulators is given in table A.2. The table also lists some properties of the ILC
algorithms considered in those publications. The abbreviations used in table A.2
are listed in table A.1.

property I type of results presented in publication
a only theoretical analysis
s simulation
e experimental results

property II type of ILC considered in publication
g gain-type ILC
m model-type ILC
a adaptive-type ILC

property III system class considered in publication
LTI Linear Time Invariant
LTV Linear Time-Varying
NL Non-Linear
EMR Equations of Motion of a Rigid robot
EMF Equations of Motion of a Flexible robot
PS System that satisfies passivity property
HS Hamiltonian System
PVI system with velocity proportional to input

property IV compensation of tracking error at high frequencies
y yes
n no

property V input signal modified by ILC
t torque feedforward



158 Appendix A. Literature on the application of ILC to robots

p position setpoints
v velocity setpoints
a acceleration setpoints

property VI location of measurement of tracking error
m motor side of transmission
a arm side of transmission
b both, motor and arm side of transmission
c arm side of transmission computed from motor side

property VII measure to prevent amplification at high frequencies
- none
BF basis functions
LPF low-pass robustness filter
LPA other type of low-pass filtering

property VIII feedback controller applied in parallel with ILC
- none
PD feedback of Position and its Derivative
PID PD plus feedback of Integral of position
PDD PD plus feedback of 2nd order Derivative of position
PDG PD plus Gravity compensation
PDS PD plus Sliding mode control
FBL FeedBack Linearisation
LQG Linear Quadratic reGulator
IC Industrial Controller (no further specification)

property IX degrees of freedom in simulation or experiment
Table A.1: Properties listed in table A.2
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publication I II III IV V VI VII VIII IX
Amann et al. (1996a) s m LTV n t m - - 1
Arif et al. (1999) s g LTV n t m - - 1
Arif et al. (2000) s g LTV n t m - - 1
Arif et al. (2002) s g NL n t m - - 2
Arif et al. (2003) s g LTV n t m - - 2
Arimoto (1990) a g LTV n t m - PDG -
Arimoto et al. (1984) a g LTV n t m - - -
Arimoto et al. (2000) s g PS n t c - PD 3
Avrachenkov (1998) s m NL n t m - - 2
Bondi et al. (1998) s g EMR n t c - PDD 2
Bukkems et al. (2005) e m LTI n a m LPF FBL 3
Cheng and Wen
(1993)

s m LTI y t a BF PD 2

Choi and Lee (2000) s a EMR n t m - PD 2
De Luca et al. (1992) e g LTI n t m LPF PD 2
De Luca and Ulivi
(1992)

s m LTI n p m LPF PD 2

Deman et al. (1999) a g PVI n v a LPF PID -
Driessen and Sadegh
(2004)

s g EMR n t m - - 2

Elci et al. (2002) e g LTI n p m BF IC 7
Fujimoto and Sugie
(2003)

e g HS n t m - PD 2

Gorinevsky (1995) s m LTV y t b BF PD 2
Gorinevsky et al.
(1997)

e m LTV y t m BF PID 2

Guglielmo and Sadegh
(1996)

e a EMR y t c BF PD 4

Gunnarsson et al.
(2007)

e m LTI y p b LPA LQG 1

Gunnarsson and
Norrlöff (2001)

e m LTI n p m LPF IC 1

Hamamoto and Sugie
(2002)

e g EMR n t c BF PD 2

Hatzikos et al. (2004) s m NL n t m - - 1
Jiang et al. (1994) s a EMR n t c - PDS 2
Kavli (1993) e m LTI n p m LPA IC 1
Kawamura et al.
(1988)

e g LTV n t m - PDG 3

Lange and Hirzinger
(1995)

e m LTI n p m LPA IC 6
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Lange and Hirzinger
(1999a)

e m LTI n p a LPA IC 6

Lange and Hirzinger
(1999b)

e m LTI n p a LPA IC 2

Longman (2000) e g LTI n p m LPF IC 7
Mita and Kato (1985) s g LTI n t m LPF FBL 3
Miyazaki et al. (1986) e g EMF y t b LPF - 2
Norrlöf (2000) e m LTI n p m LPF IC 3
Norrlöf and
Gunnarsson (2002a)

e a LTI n p m LPF IC 3

Norrlöf and
Gunnarsson (2002b)

e m LTI n p m LPF IC 3

Oh et al. (1988) s a LTV n t m - - 2
Polushin and Tayebi
(2004)

e a EMR n t m LPF PD 6

Poo et al. (1996) e m EMR n t m - - 2
Tang et al. (2000) e g EMR n t m BF PD 3
Tayebi (2004) s a EMR n t m - PD 2
Tayebi and Islam
(2006)

e a EMR n t m LPA PD 3

Togai and Yamano
(1985)

e g LTI n t m - IC 2

Tso and Ma (1992) s m EMR n t m - - 2
Velthuis et al. (1996) s g LTI n t m BF PD 1
Wada et al. (1993) e g FMR y t a LPF PD 1
Wang (1995) a g EMF y t a - PD -
Xu and Xu (2004) s a NL n t m - P 1
Ye and Wang (2005) s g LTI n p m LPF IC 1

This work e m LTV y p a LPF IC 2

Table A.2: Literature on the application of ILC to robotic manipulators



Appendix B

Solution to optimal control

problems

In this appendix the solutions to two optimal control problems are discussed.
The affine quadratic discrete-time optimal control problem is considered in sec-
tion B.1. The solution to this problem used to compute the optimal feedforward
update for norm-optimal ILC (chapter 3). The affine quadratic two-person zero-
sum dynamic game is considered in section B.2. The solution to this problem
is used to compute the optimal learning filter for robust ILC (chapter 4).

B.1 Affine quadratic discrete-time optimal con-

trol problem

Considerer the control problem consisting of the following objective, objective
function and state equation

ǔi = arg min
ui

J, (B.1a)

J =

Ni−1
∑

i=1

(

xi+1
TQi+1xi+1 + ui

TR
(u)
i ui + vi

TR
(v)
i vi

)

, (B.1b)

xi+1 = Aixi +B
(u)
i ui +B

(v)
i vi (B.1c)

where it is assumed that R
(u)
i > 0 and the initial state x1 and the deterministic

input vi are known. Lewis and Syrmos (1995) solve this problem for an LTI
system and time-varying gains in the objective function. Başar and Olsder
(1995) solve the problem for an LTV system and time-varying gains. Both
solutions yield the same optimal input for an LTI system, but the derivation
presented by Lewis and Syrmos (1995) is more straightforward. Therefore the
line of that derivation is used hereafter to derive the solution of the optimal



162 Appendix B. Solution to optimal control problems

control problem for an LTV system and time-varying gains in the objective
function.

The state equation is considered as a constraint equation that is accounted
for in the optimisation problem using the Lagrange-multiplier technique. Intro-
ducing the Lagrange multiplier λi, the objective function J becomes

J =

Ni−1
∑

i=1

(

xi+1
TQi+1xi+1 + ui

TR
(u)
i ui + vi

TR
(v)
i vi

+2λT
i+1

(

Aixi +B
(u)
i ui +B

(v)
i vi − xi+1

))

. (B.2)

A stationary point of J is found by equating the derivative of J with respect to
ui, xi and λi to zero. Equating the derivative of J with respect to λi to zero
yields the state equation. Equating the derivative of J with respect to ui to
zero yields

∂J

∂ui

= O,

⇒2R
(u)
i ui + 2B

(u)
i

Tλi+1 = O,

⇒ui = −R(u)
i
−1B

(u)
i

Tλi+1. (B.3)

Equating the derivative of J with respect to xi to zero yields

∂J

∂xi

= O,

⇒
{

2Qixi − 2λi + 2AT
i λi+1 = O for i = 1 . . . Ni − 1,

2QNi
xNi
− 2λNi

= O,

⇒
{

λi = AT
i λi+1 +Qixi for i = 1 . . . Ni − 1,

λNi
= QNi

xNi
.

(B.4)

The (unknown) input is eliminated from the state-equation by inserting
equation (B.3) in equation (B.1c), yielding

xi+1 = Aixi + Piλi+1 +B
(v)
i vi, (B.5)

where
Pi = −B(u)

i R
(u)
i
−1B

(u)
i

T . (B.6)

Equations (B.4) and (B.5) define two coupled state-equations running in the
opposite time-direction. The causal and the anti-causal state-equations are
decoupled by the introduction of the following state-transformation

λi = Sixi + ηi. (B.7)

Substituting this state-transformation in equation (B.5) gives

xi+1 = Aixi + PiSi+1xi+1 + Piηi+1 +B
(v)
i vi. (B.8)
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An expression for xi+1 can be derived from this equation using the following
definition

Li = I − PiSi+1. (B.9)

If Li is invertible, then xi+1 can be expressed as

xi+1 = L−1
i

(

Aixi + Piηi+1 +B
(v)
i vi

)

. (B.10)

Substitution of the state transformation in equation (B.4) gives







Sixi + ηi = AT
i Si+1xi+1

+AT
i ηi+1 +Qixi for i = 1 . . . Ni − 1,

SNi
xNi

+ ηNi
= QNi

xNi
.

(B.11)

Subsequent substitution of equation (B.10) gives











Sixi + ηi = AT
i Si+1L

−1
i

(

Aixi + Piηi+1 +B
(v)
i vi

)

for i =

+AT
i ηi+1 +Qixi 1 . . . Ni − 1,

SNi
xNi

+ ηNi
= QNi

xNi
.

(B.12)
This equation holds for any xi if

{

Si = AT
i Si+1L

−1
i Ai +Qi for i = 1 . . . Ni − 1,

SNi
= QNi

,
(B.13)

and
{

ηi = AT
i Si+1L

−1
i

(

Piηi+1 +B
(v)
i vi

)

+AT
i ηi+1 for i = 1 . . . Ni − 1,

ηNi
= O.

(B.14)
Note that equation (B.13) is the non-stationary Riccati difference equation
and (B.14) is an anti-causal state convolution

Finally, the state transformation is substituted in the equation (B.3) to ex-
press the input ui in the states xi and ηi

ui = −R(u)
i
−1B

(u)
i

T (Si+1xi+1 + ηi+1) . (B.15)

For this optimal input, the value of J can be expressed as (Başar and Olsder,
1995, page 240)

J = (2η1 + S1x1)
T
x1 +

Ni−1
∑

i=1

(

(

2ηi+1 + Si+1B
(v)
i vi

)T

L−1
i B

(v)
i vi

−ηT
i+1Q

(η)
i+1ηi+1 + vi

TR
(v)
i vi

)

, (B.16)
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where

Q
(η)
i+1 = B

(u)
i

(

R
(u)
i +B

(u)
i

TSi+1B
(u)
i

)−1

B
(u)
i

T . (B.17)

Assuming R
(u)
i > 0, this value of J is a unique minimum with respect to ui

if the following necessary and sufficient condition is satisfied (Başar and Olsder,
1995)

R
(u)
i +B

(u)
i

TSi+1B
(u)
i > 0. (B.18)

This condition also implies that Li is invertible. Moreover, it can be shown that
if R

(u)
i > 0 and Qi > 0, then Si > 0 and thus condition (B.18) is satisfied.
Similarly, assuming R

(u)
i < 0, J would have a unique maximum with respect

to ui if
R

(u)
i +B

(u)
i

TSi+1B
(u)
i < 0. (B.19)

This condition also implies that Li is invertible. Moreover, it can be shown that
if R

(u)
i < 0 and Qi < 0, then Si < 0 and thus condition (B.18) is satisfied.
Summarising, the procedure to compute the minimising input ui consists of

the following steps:

• compute the time-varying Riccati matrix Si from equation (B.13), using
the definitions of Li and Pi in equations (B.9) and (B.6), where it is
assumed that Li is invertible,

• check condition (B.18) for the existence of a minimising input ui

• compute the costate ηi from equation (B.14),

• compute the state xi from equation (B.10),

• compute the optimal input ui from equation (B.15).
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B.2 Affine quadratic two-person zero-sum dy-

namic game

Considerer the control problem consisting of the following objective, objective
function and state equation

ǔi = arg min
ui

max
qi

J, (B.20a)

J =

Ni−1
∑

i=1

(

xi+1
TQi+1xi+1 + ui

TR
(u)
i ui + qi

TR
(q)
i qi + vi

TR
(v)
i vi

)

, (B.20b)

xi+1 = Aixi +B
(u)
i ui +B

(q)
i qi +B

(v)
i vi (B.20c)

where it is assumed that R
(u)
i > 0, R

(u)
i < 0 and the initial state x1 and the

deterministic input vi are known. The Nash solution to this problem is derived
hereafter. The resulting inputs qk and uk independently optimise the objective
function for the worst case effect of the other variable such that a deviation of
either of the inputs from their optimum yields a smaller or a larger objective
function respectively. Başar and Olsder (1995) give the solution for an LTV
system with R

(u)
i = I,R

(q)
i = −I. A solution for general weighting matrices is

given by Hung and Yang (2002). Their solution is presented in this section in a
notation that complies with the previous section.

The state equation is considered as a constraint equation that is accounted
for in the optimisation problem using the Lagrange-multiplier technique. Intro-
ducing the Lagrange multiplier λi, the objective function J becomes

J =

Ni−1
∑

i=1

(

xi+1
TQi+1xi+1 + ui

TR
(u)
i ui + qi

TR
(q)
i qi

+2λT
i+1

(

Aixi +B
(u)
i ui +B

(q)
i qi +B

(v)
i vi − xi+1

))

(B.21)

A stationary point of J is found by equating the derivative of J with respect to
ui, qi, xi and λi to zero. Equating the derivative of J with respect to λi to zero
yields the state equation. Equating the derivative of J with respect to ui and
qi to zero yields

∂J

∂ui

= O,

⇒2R
(u)
i ui + 2B

(u)
i

Tλi+1 = O,

⇒ui = −R(u)
i
−1B

(u)
i

Tλi+1, (B.22)

∂J

∂qi
= O,

⇒2R
(q)
i qi + 2B

(q)
i

Tλi+1 = O,

⇒qi = −R(q)
i
−1B

(q)
i

Tλi+1. (B.23)
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Differentiation of J with respect to xi yields

∂J

∂xi

= O,

⇒
{

2Qixi − 2λi + 2AT
i λi+1 = O for i = 1 . . . Ni − 1,

2QNi
xNi
− 2λNi

= O,

⇒
{

λi = AT
i λi+1 +Qixi for i = 1 . . . Ni − 1,

λNi
= QNi

xNi
.

(B.24)

The (unknown) inputs ui and qi are eliminated from the state-equation by
inserting equations (B.22) and (B.23) in equation (B.20c), yielding

xi+1 = Aixi + Piλi+1 +B
(v)
i vi, (B.25)

where
Pi = −B(u)

i R
(u)
i
−1B

(u)
i

T −B(q)
i R

(q)
i
−1B

(q)
i

T . (B.26)

Equations (B.24) and (B.25) define two coupled state-equations running in the
opposite time-direction. These equations are decoupled by the introduction of
the following state-transformation

λi = Sixi + ηi. (B.27)

Substituting this state transformation into equation (B.25) gives

xi+1 = Aixi + PiSi+1xi+1 + Piηi+1 +B
(v)
i vi. (B.28)

An expression for xi+1 can be derived from this equation using the following
definition

Li = I − PiSi+1. (B.29)

If Li is invertible, then xi+1 can be expressed as

xi+1 = L−1
i

(

Aixi + Piηi+1 +B
(v)
i vi

)

. (B.30)

Substitution of the state transformation in equation (B.24) gives







Sixi + ηi = AT
i Si+1xi+1

+AT
i ηi+1 +Qixi for i = 1 . . . Ni − 1,

SNi
xNi

+ ηNi
= QNi

xNi
.

(B.31)

Subsequent substitution of equation (B.30) gives











Sixi + ηi = AT
i Si+1L

−1
i

(

Aixi + Piηi+1 +B
(v)
i vi

)

for i =

+AT
i ηi+1 +Qixi 1 . . . Ni − 1,

SNi
xNi

+ ηNi
= QNi

xNi
.

(B.32)



B.2. Affine quadratic two-person zero-sum dynamic game 167

This equation holds for any xi if

{

Si = AT
i Si+1L

−1
i Ai +Qi for i = 1 . . . Ni − 1,

SNi
= QNi

,
(B.33)

and
{

ηi = AT
i Si+1L

−1
i

(

Piηi+1 +B
(v)
i vi

)

+AT
i ηi+1 for i = 1 . . . Ni − 1,

ηNi
= O.

(B.34)
Note that equation (B.33) is the non-stationary Riccati difference equation
and (B.34) is an anti-causal state convolution.

Finally, the state transformation is substituted in the equations (B.22)
and (B.23) to express the inputs ui and qi in the states xi and ηi

ui = −R(u)
i
−1B

(u)
i

T (Si+1xi+1 + ηi+1) , (B.35)

qi = −R(q)
i
−1B

(q)
i

T (Si+1xi+1 + ηi+1) . (B.36)

For these optimal inputs, the value of J can be expressed as (Hung and
Yang, 2002)

J = (2η1 + S1x1)
T
x1 +

Ni−1
∑

i=1

(

(

2ηi+1 + Si+1B
(v)
i vi

)T

L−1
i B

(v)
i vi

−ηT
i+1Q

(η)
i+1ηi+1 + vi

TR
(v)
i vi

)

, (B.37)

where

Q
(η)
i+1 = −

(

I +B
(u)
i R

(u)
i
−1B

(u)
i

TSi+1

)−1

B
(q)
i

(

R
(q)
i +B

(q)
i

TSi+1

(

I +B
(u)
i R

(u)
i
−1B

(u)
i

TSi+1

)−1

B
(q)
i

)−1

B
(q)
i

T
(

I +B
(u)
i R

(u)
i
−1B

(u)
i

TSi+1

)−T

−B(u)
i

(

R
(u)
i +B

(u)
i

TSi+1B
(u)
i

)−1

B
(u)
i

T . (B.38)

The stationary point of J is a minimum with respect to ui if the objective
function has a minimum with respect to ui for any qi. This can be checked
by considering qi as an external (fixed) input and using the theory from sec-
tion B.1 to determine if the remaining optimal control problem has a minimum
with respect to ui. This involves the computation of the matrix sequences Pi,
Li and Si according to equations (B.6), (B.9) and (B.13) respectively. Then
the objective function has a minimum with respect to ui if condition (B.18) is
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satisfied. Similarly, the stationary point of J is a maximum with respect to qi
if the objective function has a maximum with respect to qi for any ui. Again,
this can be checked by considering ui as an external (fixed) input and using
the theory from section B.1 to determine if the remaining optimal control prob-
lem has a maximum with respect to qi. This involves the computation of the
matrix sequences Pi, Li and Si according to equations (B.6), (B.9) and (B.13)
respectively, where matrices R

(u)
i and B

(u)
i are replaced by R

(q)
i and B

(q)
i re-

spectively. Then the objective function has a maximum with respect to qi if
condition (B.19) is satisfied.

A more efficient way to check the conditions for the stationary point J to
be a minimum with respect to ui and a maximum with respect to qi could
possibly be derived directly from conditions on Si in equation (B.33), though
this possibility is not investigated further in this work.

The procedure above checks the existence of the Nash solution. The condi-
tions for the existence of the Nash solution are sufficient for the existence of the
Stackelberg solution (see subsection 4.3.1).

Summarising, a procedure to compute the minimising input ui and the max-
imising input qi consists of the following steps:

• check conditions for the existence of a maximising input qi and a minimis-
ing input ui according to the previously described procedure using the
theory from section B.1,

• compute the time-varying Riccati matrix Si from equation (B.33), using
the definitions of Li and Pi in equations (B.29) and (B.26), where it is
assumed that Li is invertible

• compute the costate ηi from equation (B.34),

• compute the state xi from equation (B.30),

• compute the maximising input qi from equation (B.36),

• compute the minimising input ui from equation (B.35),



Appendix C

Experimental results

This appendix contains figures that show the results from the experiments de-
scribed in chapter 6. Figures C.1-C.8 show the MAX and RMS tracking error
in all iterations of these experiments. Figures C.9-C.24 show the tracking errors
in iterations 1 and 9 of the experiments. The figures correspond to the experi-
ments listed in table C.1. The subfigures that are crossed out correspond to the
RILC experiments for which the SCRC is not satisfied (see subsection 6.2.2).

figure with figure with figure with
MAX and RMS error in error in

trajectory method γ final error iteration 1 iteration 9
A NILC - C.1 C.9 C.10
A RILC 0.99 C.2 C.11 C.12
A RILC 0.75 C.3 C.13 C.14
A RILC 0.50 C.4 C.15 C.16
B NILC - C.5 C.17 C.18
B RILC 0.99 C.6 C.19 C.20
B RILC 0.75 C.7 C.21 C.22
B RILC 0.50 C.8 C.23 C.24

Table C.1: The experiments displayed in figures C.1-C.24
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